
Lecture 11-14 
Huffman Codes 
One Class SVM 

Ref:	Outlier	Analysis,	Charu	C	Agrawal	
Ref:	Bishop,	Christopher	M.	Pattern	recognition	and	machine	learning.		
Ref:	Tutorial	-https://web.mit.edu/zoya/www/SVM.pdf

https://web.mit.edu/zoya/www/SVM.pdf


Source Coding
• Assume a source has alphabet with k 

symbols 
• Symbol sk occurs with probability pk 
• Average information per symbol is given 

by entropy

H =
k

∑
i=1

pk log2
1
pk



Huffman Coding

• Calculate symbol probabilities and a 
lookup table 

• Append the test sequence and calculate 
the bits required per symbol 

• Or calculate bits required per window in 
a sliding window pattern



Equation of a hyperplane
EquaHon	of	a	straight	line	w1 . x1 + w2 . x2 + b = 0

= > wT . x + b = 0

= > [w1 w2] [x1
x2] + b = 0

EquaHon	of	a	straight	plane:	w1 . x1 + w2 . x2 + b = 0

= > [w1 w2 w3]
x1
x2
x3

+ b = 0

Hence,	equaHon	of	a	generic	hyperplane	in	n	dimensional	space:	



Linear Classifier

• Obtain equation of the hyperplane that 
separates the data 

• Data points on one side of the plane 
would give negative value of 

• Data points on the other side would give 
positive values of   

wT . x + b

wT . x + b



How to represent the classifier 
constraint?

• Let us label one class by +1 and another 
class by -1 

• If the classifier is working correctly, the 
sign of the hyperplane function and the 
label should be the same for all n points

∀i yi(wT . xi + b) ≥ 0

where yi are is the label of ith data point.



What is Support Vector Machine?
• Aka maximum margin classifier 
• Finds a hyperplane with maximum 

margin

Margin

x1

x2



SVM Constraint
• Enforce positive data points to give a value 

of more than 1 and negative data points a 
value of less than -1, in other words, 

yi(wT . xi + b) ≥ 1

yi(wT . xi + b) ≤ − 1

∀i yi(wT . xi + b) ≥ 1

For positive samples

For negative samples

Or



Calculate margin in terms of 
w’s and b!

• Pick a point p1 on  

• Pick a point p2 on                        that is 
closest to p1 

• The closest point will lie in perpendicular 
direction of the optimal hyperplane 

• Distance between these points is the margin 

• Which vector is in perpendicular direction?

(wT . x + b) = − 1

(wT . x + b) = 1



Margin

x1

x2

w

We know that w is perpendicular to the 
hyperplane



Calculate margin in terms of 
w’s and b!

• Hence, the distance between the 
hyperplanes can be measured as  

• But we also know that 
λw

(wT . p2 + b) − (wT . p1 + b) = 1 − (−1) = 2
= > wT . (p2 − p1) = 2



x1

x2

Margin between hyperplanes represented 
by                          &

p2

p1

λw

(wT . x + b) = − 1 (wT . x + b) = 1



Calculate margin in terms of 
w’s and b!

• Putting        for              we getλw
λwTw = 2 = > λ =

2
wTw

(p2 − p1)

• Hence the the margin is 

2
wTw

|w | =
2

|w |2 |w | =
2

|w |



Optimal margin is obtained by maximising         or 
minimising        which is equivalent to minimising  

subject to the following constraints:

2
|w ||w |

2

∀i yi(wT . xi + b) ≥ 1

|w |2

2
=

wTw
2



What if the data isn’t perfectly linearly 
separably, due to noise or wrong 

labelling!

• The earlier scheme will not be able to find 
any hyperplane 

• Allow some data points to be wrongly 
classified but minimise this error as well



Modified Constraint

∀i yi(wT . xi + b) ≥ 1 − ϵi

x1

x2

ϵi	slack	variable	

ϵj



Let us penalise data points on the 
wrong side of the hyperplanes!

• For data points without error 
1 − yi(wT . xi + b) ≤ 0

1 − yi(wT . xi + b) ≥ 0
• For data points with error 

No penalty

Large penalty

How to represent penalty in a single 
equation? 



Total Penalty
• Calculate weighted sum of penalties 

n

∑
i=1

αi(1 − yi(wT . xi + b))

• Choose weights such that it works for both 
types of data points, with and without error 

n

∑
i=1

Max
0≤αi≤C

αi(1 − yi(wT . xi + b))



Refined Minimisation Function 
Function

L = Min
w,b

[ wTw
2

+
n

∑
i=1

Max
αi≥0

αi(1 − yi(wT . xi + b))]

How to minimise this function?



Simplified (Dual) Form

L = Max
α

[Min
w,b

[ wTw
2

+
n

∑
i=1

αi(1 − yi(wT . xi + b))]]

Let J = [wTw
2

+
n

∑
i=1

αi(1 − yi(wT . xi + b))]]



Obtain w and b in terms of 
data points and 

Set	
∂J
∂w

= 0	and	
∂J
∂b

= 0

α′�is



Differentiating Vectors
let	g = wTw	where	w = [

w1
w2. . . ]

∂g
∂w

=

∂g
∂w1

∂g
∂w2. . .

	but	 g = wTw = |w |2 = w2
i + w2

2 . . . 	so	

∂g
∂w

=

∂(w2
1 + w1

2 . . . )
∂w1

∂(w2
1 + w1

2 . . . )
∂w2. . .

= [
2w1

2w2. . . ] = 2w

Similarly	
∂(wTX)

∂w
=

∂(w2
1 + w1

2 . . . )
∂w1

∂(w1 . x1 + w2 . x2 . . . )
∂w2. . .

= [
x1
x2. . . ] = x



Obtain w and b in terms of 
data points and 

SeOng	
∂J
∂b

= 0 	gives	us	
n

∑
i=1

αiyi = 0

α′�is

	and	seOng	
∂J
∂w

= 0 	gives	us	 w =
n

∑
i=1

αiyixi



Optimisation function to calculate 

Use quadratic programming to solve it!

α′�is

max
α

[
n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjxT
i xj]



Finally calculate b using 
support vectors

∀s ys(wT . xs + b) = 1

• Find the support vectors by observing 
the values of Lagrange variables 

• Use the above equation to calculate b for 
each support vector and take average



Decision Function

f(x) = sign(wTx + b) = sign(
n

∑
i=1

αiyixiTx + b)



How to separate the following 
points using a straight line?

-1

0

1

2

3

4

-1 0 1 2 3 4

x

y
You can linearly separate the data by adding one 
more feature, x*y to the dataset. 



Example
Let there be two points (x1, x2) and (y1, y2)

Let the transformation functio be 

ϕ(x) = [ 1 x2
1 2x1x2 x2

2 2x1 2x2 ]

ϕ(y) = [ 1 y2
1 2y1y2 y2

2 2y1 2y2 ]

ϕ(x)Tϕ(y) = 1 + x2
1 y2

1 + 2x1x2y1y2 + x2
2 y2

2 + 2x1y1 + 2x2y2

= 1 + (x1y1 + x2x2)2 + 2x1y1x2y2

= (1 + (x1y1 + x2x2))2

K(x, y) = (1 + xTy)2



Kernel Trick 

• Instead of transforming the data to new space, obtain a 
function (K()) that can directly calculate the dot product. 

• Both decision function as well as the optimisation 
function to calculate Lagrange multipliers depends on 
the dot product of feature vectors, not actual 
transformed feature vectors.

f(x) = sign(wTϕ(x) + b) = sign(
n

∑
i=1

αiyiϕ(xi)Tϕ(x) + b)

= sign(
n

∑
i=1

αiyiK(xi, x) + b)Transformation



Various Kernels

• Gaussian 
• Radial Basis Function (RBF) 
• Polynomial 
• Sigmoid  
• Hyperbolic tangent 
• Laplace RBF



One Class SVM
• Treat all data as normal data 
• Transform data using kernel trick such that data 

points are separated from the origin by a big 
margin 

• Find a decision boundary that separates origin and 
data points and as far as possible from the center

Ref: Schölkopf, Bernhard, et al. "Estimating the support of a high-dimensional distribution." Neural 
computation 13.7 (2001): 1443-1471.



Decision Boundary and Decision Function

• Decision Boundary

• Decision Function

f(x) = sign(wTϕ(x) − ρ) = sign(
n

∑
i=1

αiK(xi, x) − ρ)

wTϕ(x) − ρ = 0



• Normal

• With slack variable

wTϕ(x)i − ρ ≥ 0

One Class SVM Constraints

wTϕ(x)i − ρ ≥ ϵi



Minimization Function

• Remaining steps are similar to two-class SVM 
• The effectiveness of one-class SVM depends 

on the transformation function’s capability to 
separate origin from  normal data points 

L =
wTw

2
+

1
νn

n

∑
i=1

Max
αi≥0

αi(ρ − wT . ϕ(xi)) − ρ


