Lecture 11-14
Huffman Codes
One Class SVM

Ref: Outlier Analysis, Charu C Agrawal
Ref: Bishop, Christopher M. Pattern recognition and machine learning.
Ref: Tutorial -https://web.mit.edu/zoya/www/SVM.pdf



https://web.mit.edu/zoya/www/SVM.pdf

Source Coding

« Assume a source has alphabet with k
symbols

« Symbol sk occurs with probability pi

« Average information per symbol is given
by entropy

k
1
H = ZPk logy —
i=1 Pk



Huffman Coding

 Calculate symbol probabilities and a
lookup table

« Append the test sequence and calculate
the bits required per symbol

« Or calculate bits required per window in
a sliding window pattern



Equation of a hyperplane

Equation of a straight line w, .x; + wy, . x, + b =0

X

=>[W W] +b=0
X2

Equation of a straight plane: w;.x; + w, . x, + b =0
X

=>[W W, W3] | X2 +b =0
X3

Hence, equation of a generic hyperplane in n dimensional space:

=>w .x+b=0



Linear Classifier

+ Obtain equation of the hyperplane that
separates the data

» Data points on one side of the plane
would give negative value of w!.x+b

 Data points on the other side would give
positive values of w! .x+b



How to represent the classifier

constraint?
 Let us label one class by +1 and another

class by -1

* If the classifier is working correctly, the
sign of the hyperplane function and the
label should be the same for all n points

Vi y(w!.x;+b) >0

where y; are is the label of ith data point.



What is Support Vector Machine?

« Aka maximum margin classifier

 Finds a hyperplane with maximum
margin

X2 S

@ @ Margin

x1



SVM Constraint

» Enforce positive data points to give a value
of more than 1 and negative data points a
value of less than -1, in other words,

For positive samples yl.(WT, X:+b) > 1
For negative samples yl.(WT. X:+b) < —1

Or Vi y(w!.x; +b) > 1



Calculate margin in terms of

e Pic

e Pic

closest to p1

< d

K< d

noINnt

noINt

w's and b!

ol on(w! . x+b)=-1

o2 on(w! .x+b)=1 thatis

» The closest point will lie in perpendicular

direction of the optimal hyperplane

» Distance between these points is the margin

» Which vector is in perpendicular direction?



We know that w is perpendicular to the
hyperplane

X2

Margin




Calculate margin in terms of
w'’s and b!

» Hence, the distance between the
hyperplanes can be measured as Aw

e But we also know that

wi.p,+b)—(wl.py+b)=1-(-1)=2
=>w . (p,—py =2



Margin between hyperplanes represented
by W .x+b)=-1 & (W .x+b)=1




Calculate margin in terms of

w's and b!

e Putting Aw for (p, — py) we get

oA B 2
wWw=2=>,)=—
wliw

« Hence the the margin is

2 2 2
W] = ——|w|=——
w'w | w | |w |




2

Optimal margin is obtained by maximising Wl or
w
minimising ! " | W1 which is equivalent to minimising
2
|w | o wlw
2 2

subject to the following constraints:

Vi y(w!.x; +b) > 1



What if the data isn’t perfectly linearly
separably, due to noise or wrong
labelling!

 The earlier scheme will not be able to find
any hyperplane

 Allow some data points to be wrongly
classified but minimise this error as well



X2

Modified Constraint

¢; slack variable




Let us penalise data points on the
wrong side of the hyperplanes!

For data points without error

1 —yw'.x;+b) <0 No penalty

For data points with error
1 —y(wl.x;,+b) >0 Large penalty

How to represent penalty in a single
equation?



Total Penalty

 Calculate weighted sum of penalties
D afl - y(w'.x;+ b))
=1

* Choose weights such that it works for both
types of data points, with and without error

Y Max a1 —y(w'.x;+ b))
=1

0<o,;<C



Refined Minimisation Function
Function

wlw

2

+ Z Max a1l — yl-(WT.Xi + b))]

>0
i=1 %=

L = Min |
w,h

How to minimise this function?



Simplified (Dual) Form

wlw

+ Y a1 —y(wl.x;+ b))

L = Max |Min|
b =1

o W,

wliw

Let J=[ 5

+ ) a1 = y(w'.x;+ b))
=1



Obtain w and b in terms of
data points and as

oJ oJ
Set — =0and — =10
OW db



Differentiating Vectors

Wi
let g = w/w wherew = [w2]

_ o0
0g oWy T 2 2, 2
@WZ
_6(w12+w21...)_
%Z owl+wi..) | = | 2w, = 2w
aWZ °
[ owlwl.) ]
o awX) ow "1
Slmllarly ow = | ow,.x;+wxy.. ) | T | X2 =X
ow, .




Obtain w and b in terms of
data points and as

oJ A
Setting — = (0 gives us a.y. = ()
8 — g ; ,

d setti oJ 0 gi Z
ana setting —— = IVes US W = a.v.X.
g aw g lyl



Optimisation function to calculate

/
;s

n 1 n n
mgzx[ Z a; — 5 2 2 aiajyiijiTXj]
i=1

i=1 j=1

Use quadratic programming to solve it!



Finally calculate b using
support vectors

Vs yS(WT.XS +b)=1

« Find the support vectors by observing
the values of Lagrange variables

« Use the above equation to calculate b for
each support vector and take average



Decision Function

f(x) = sign(w!x + b) = sign( Z a,yX;IX + b)
i=1



How to separate the following
points using a straight line?

) O Rk N W b
O

-1 0 1 2 3 4

y
You can linearly separate the data by adding one

more feature, x*y to the dataset.



Example
Let there be two points (x;, x,) and (y;,y,)

Let the transformation functio be
px)=1[1 x12 \/Exlxz x22 \/§x1 \/Exz]
o =11 y2 V2 ¥2 V2y V2» ]

P P(y) = 1+ X7y] + 2x10917; + 135 + 2x191 + 225y,
= 14 (xyy; + x%)° + 2200y,
= (1 4+ (x;y; + %,x,))?
K(x,y) = (1 +x"y)’



Kernel Trick

f(x) = sign(w ¢(x) + b) = sign( Y’ ay,p(x)" p(x) + b)
i=1

/

n
Transformation = sign( Z o;y;K(X, X) + b)
i=1
* Instead of transforming the data to new space, obtain a
function (K()) that can directly calculate the dot product.

* Both decision function as well as the optimisation
function to calculate Lagrange multipliers depends on
the dot product of feature vectors, not actual
transformed feature vectors.



Various Kernels

Gaussian

Radial Basis Function (RBF)
Polynomial

Sigmoid

Hyperbolic tangent
Laplace RBF



One Class SVM

 Treat all data as normal data

« Transform data using kernel trick such that data
points are separated from the origin by a big
margin

 Find a decision boundary that separates origin and
data points and as far as possible from the center

Ref: Scholkopf, Bernhard, et al. "Estimating the support of a high-dimensional distribution." Neural
computation 13.7 (2001): 1443-1471.



Decision Boundary and Decision Function

« Decision Boundary

w/ip(x)—p=0

e Decision Function

f(x) = sign(w' p(x) = p) = sign( Y aK(x;.X) = p)
=1



One Class SVM Constraints

e Normal
WTéb(X)i —-p20
 With slack variable

WT¢(X)1' —p 2 €



Minimization Function

wiw 1 &
L = +— ) Max alp—w!.p(x)) —
—+— D (p— W) — p

>0
i=1 %=

* Remaining steps are similar to two-class SVM

* The effectiveness of one-class SVM depends
on the transformation function’s capability to
separate origin from normal data points



