Lecture 11-14 Huffman Codes One Class SVM

Ref: Outlier Analysis, Charu C Agrawal
Ref: Bishop, Christopher M. Pattern recognition and machine learning. Ref: Tutorial -https://web.mit.edu/zoya/www/SVM.pdf

Source Coding

- Assume a source has alphabet with k symbols
- Symbol s_{k} occurs with probability p_{k}
- Average information per symbol is given by entropy

$$
H=\sum_{i=1}^{k} p_{k} \log _{2} \frac{1}{p_{k}}
$$

Huffman Coding

- Calculate symbol probabilities and a lookup table
- Append the test sequence and calculate the bits required per symbol
- Or calculate bits required per window in a sliding window pattern

Equation of a hyperplane

Equation of a straight line $w_{1} \cdot x_{1}+w_{2} \cdot x_{2}+b=0$
$=>\left[\begin{array}{ll}w_{1} & w_{2}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+b=0$
Equation of a straight plane: $w_{1} \cdot x_{1}+w_{2} \cdot x_{2}+b=0$
$=>\left[\begin{array}{lll}w_{1} & w_{2} & w_{3}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]+b=0$

Hence, equation of a generic hyperplane in n dimensional space:

$$
=>\mathbf{w}^{T} \cdot \mathbf{x}+b=0
$$

Linear Classifier

- Obtain equation of the hyperplane that separates the data
- Data points on one side of the plane would give negative value of $\mathbf{w}^{T} . \mathbf{x}+b$
- Data points on the other side would give positive values of $\mathbf{w}^{T} \cdot \mathbf{x}+b$

How to represent the classifier constraint?

- Let us label one class by +1 and another class by -1
- If the classifier is working correctly, the sign of the hyperplane function and the label should be the same for all n points

$$
\forall i y_{i}\left(\mathbf{w}^{T} \cdot \mathbf{x}_{\mathbf{i}}+b\right) \geq 0
$$

where y_{i} are is the label of $i^{\text {th }}$ data point.

What is Support Vector Machine?

- Aka maximum margin classifier
- Finds a hyperplane with maximum margin

SVM Constraint

- Enforce positive data points to give a value of more than 1 and negative data points a value of less than -1 , in other words,

For positive samples $y_{i}\left(\mathbf{w}^{T} \cdot \mathbf{x}_{\mathbf{i}}+b\right) \geq 1$
For negative samples $y_{i}\left(\mathbf{w}^{T} \cdot \mathbf{x}_{\mathbf{i}}+b\right) \leq-1$
Or $\quad \forall i y_{i}\left(\mathbf{w}^{T} \cdot \mathbf{x}_{\mathbf{i}}+b\right) \geq 1$

Calculate margin in terms of w's and b!

- Pick a point p1 on $\left(\mathbf{w}^{T} . \mathbf{x}+b\right)=-1$
- Pick a point p2 on $\left(\mathbf{w}^{T} \cdot \mathbf{x}+b\right)=1$ that is closest to p1
- The closest point will lie in perpendicular direction of the optimal hyperplane
- Distance between these points is the margin
- Which vector is in perpendicular direction?

We know that w is perpendicular to the hyperplane

Calculate margin in terms of w's and b!

- Hence, the distance between the hyperplanes can be measured as $\lambda \mathbf{W}$
- But we also know that

$$
\begin{aligned}
& \left(\mathbf{w}^{T} \cdot \mathbf{p}_{\mathbf{2}}+b\right)-\left(\mathbf{w}^{T} \cdot \mathbf{p}_{\mathbf{1}}+b\right)=1-(-1)=2 \\
& =>\mathbf{w}^{T} \cdot\left(\mathbf{p}_{\mathbf{2}}-\mathbf{p}_{\mathbf{1}}\right)=2
\end{aligned}
$$

Margin between hyperplanes represented

 by $\left(\mathbf{w}^{T} \cdot \mathbf{x}+b\right)=-1 \quad \& \quad\left(\mathbf{w}^{T} \cdot \mathbf{x}+b\right)=1$

Calculate margin in terms of w's and b!

- Putting $\lambda \mathbf{w}$ for $\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right)$ we get

$$
\lambda \mathbf{w}^{T} \mathbf{w}=2=>\lambda=\frac{2}{\mathbf{w}^{T} \mathbf{w}}
$$

- Hence the the margin is

$$
\frac{2}{\mathbf{w}^{T} \mathbf{w}}|\mathbf{w}|=\frac{2}{|\mathbf{w}|^{2}}|\mathbf{w}|=\frac{2}{|\mathbf{w}|}
$$

Optimal margin is obtained by maximising $\frac{2}{|\mathbf{w}|}$ or minimising $\frac{|w|}{2}$ which is equivalent to minimising

$$
\frac{|\mathbf{w}|^{2}}{2}=\frac{\mathbf{w}^{T} \mathbf{w}}{2}
$$

subject to the following constraints:

$$
\forall i y_{i}\left(\mathbf{w}^{T} \cdot \mathbf{x}_{\mathbf{i}}+b\right) \geq 1
$$

What if the data isn't perfectly linearly

 separably, due to noise or wrong labelling!- The earlier scheme will not be able to find any hyperplane
- Allow some data points to be wrongly classified but minimise this error as well

Modified Constraint

Let us penalise data points on the wrong side of the hyperplanes!

- For data points without error

$$
1-y_{i}\left(\mathbf{w}^{T} \cdot \mathbf{x}_{\mathbf{i}}+b\right) \leq 0 \quad \text { No penalty }
$$

- For data points with error

$$
1-y_{i}\left(\mathbf{w}^{T} \cdot \mathbf{x}_{\mathbf{i}}+b\right) \geq 0 \quad \text { Large penalty }
$$

How to represent penalty in a single equation?

Total Penalty

- Calculate weighted sum of penalties

$$
\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\mathbf{w}^{T} \cdot \mathbf{x}_{\mathbf{i}}+b\right)\right)
$$

- Choose weights such that it works for both types of data points, with and without error

$$
\sum_{i=1}^{n} \underset{0 \leq \alpha_{i} \leq C}{\operatorname{Max}} \quad \alpha_{i}\left(1-y_{i}\left(\mathbf{w}^{T} \cdot \mathbf{x}_{\mathbf{i}}+b\right)\right)
$$

Refined Minimisation Function

Function

$$
\begin{aligned}
& L=\underset{\mathbf{w}, b}{\operatorname{Min}}\left[\frac{\mathbf{w}^{T} \mathbf{w}}{2}+\sum_{i=1}^{n} \operatorname{Max}_{\alpha_{i} \geq 0} \alpha_{i}\left(1-y_{i}\left(\mathbf{w}^{T} \cdot \mathbf{x}_{\mathbf{i}}+b\right)\right)\right] \\
& \text { How to minimise this function? }
\end{aligned}
$$

Simplified (Dual) Form

$$
\begin{gathered}
L=\underset{\alpha}{\operatorname{Max}}\left[\underset{\mathbf{w}, b}{\operatorname{Min}}\left[\frac{\mathbf{w}^{T} \mathbf{w}}{2}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\mathbf{w}^{T} \cdot \mathbf{x}_{\mathbf{i}}+b\right)\right)\right]\right] \\
\text { Let } \left.J=\left[\frac{\mathbf{w}^{T} \mathbf{w}}{2}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\mathbf{w}^{T} \cdot \mathbf{x}_{\mathbf{i}}+b\right)\right)\right]\right]
\end{gathered}
$$

Obtain w and b in terms of data points and $\alpha_{i}^{\prime} s$

$$
\text { Set } \frac{\partial J}{\partial \mathbf{w}}=0 \text { and } \frac{\partial J}{\partial \mathbf{b}}=0
$$

Differentiating Vectors

let $g=\mathbf{w}^{T} \mathbf{w}$ where $\mathbf{w}=\left[\begin{array}{c}w_{1} \\ w_{2} \\ \cdots\end{array}\right]$
$\frac{\partial g}{\partial \mathbf{w}}=\left[\begin{array}{c}\frac{\partial g}{\partial \mathbf{w}_{1}} \\ \frac{\partial g}{\partial \mathbf{w}_{2}} \\ \cdots\end{array}\right]$ but $g=\mathbf{w}^{T} \mathbf{w}=|\mathbf{w}|^{2}=w_{i}^{2}+w_{2}^{2} \ldots$ so
$\frac{\partial g}{\partial \mathbf{w}}=\left[\begin{array}{c}\frac{\partial\left(w_{1}^{2}+w_{2}^{1} \ldots\right)}{\partial \mathbf{w}_{1}} \\ \frac{\partial\left(w_{1}^{2}+w_{2}^{1} \ldots\right)}{\partial \mathbf{w}_{2}} \\ \cdots\end{array}\right]=\left[\begin{array}{c}2 w_{1} \\ 2 w_{2} \\ \ldots\end{array}\right]=2 \mathbf{w}$
Similarly $\frac{\partial\left(\mathbf{w}^{T} \mathbf{X}\right)}{\partial \mathbf{w}}=\left[\begin{array}{c}\frac{\partial\left(w_{1}^{2}+w_{2}^{1} \ldots\right)}{\partial \mathbf{w}_{1}} \\ \frac{\partial\left(w_{1} \cdot x_{1}+w_{2} \cdot x_{2} \ldots\right)}{\partial \mathbf{w}_{2}} \\ \cdots\end{array}\right]=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \cdots\end{array}\right]=\mathbf{x}$

Obtain w and b in terms of

data points and $\alpha_{i}^{\prime} s$

Setting $\frac{\partial J}{\partial \mathbf{b}}=0$ gives us $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$
and setting $\frac{\partial J}{\partial \mathbf{w}}=0$ gives us $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$

Optimisation function to calculate

$$
\begin{gathered}
\alpha_{i}^{\prime} S \\
\max _{\alpha}\left[\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}\right]
\end{gathered}
$$

Use quadratic programming to solve it!

Finally calculate busing support vectors

$$
\forall s y_{s}\left(\mathbf{w}^{T} \cdot \mathbf{x}_{\mathbf{s}}+b\right)=1
$$

- Find the support vectors by observing the values of Lagrange variables
- Use the above equation to calculate b for each support vector and take average

Decision Function

$$
f(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+b\right)=\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{\mathbf{i}}^{T} \mathbf{x}+b\right)
$$

How to separate the following

 points using a straight line?

You can linearly separate the data by adding one more feature, $x^{*} y$ to the dataset.

Example

Let there be two points $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$
Let the transformation functio be

$$
\begin{aligned}
& \phi(\mathbf{x})=\left[\begin{array}{llll}
1 & x_{1}^{2} & \sqrt{2} x_{1} x_{2} & x_{2}^{2}
\end{array} \sqrt{2} x_{1}\right. \\
& \left.\begin{array}{lll}
2 & x_{2}
\end{array}\right] \\
& \phi(\mathbf{y})=\left[\begin{array}{llll}
1 & y_{1}^{2} & \sqrt{2} y_{1} y_{2} & y_{2}^{2} \\
\sqrt{2} y_{1} & \sqrt{2} y_{2}
\end{array}\right] \\
& \begin{aligned}
\phi(\mathbf{x})^{T} \phi(y) & =1+x_{1}^{2} y_{1}^{2}+2 x_{1} x_{2} y_{1} y_{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} y_{1}+2 x_{2} y_{2} \\
& =1+\left(x_{1} y_{1}+x_{2} x_{2}\right)^{2}+2 x_{1} y_{1} x_{2} y_{2} \\
& =\left(1+\left(x_{1} y_{1}+x_{2} x_{2}\right)\right)^{2} \\
K(\mathbf{x}, \mathbf{y}) & =\left(1+\mathbf{x}^{T} \mathbf{y}\right)^{2}
\end{aligned}
\end{aligned}
$$

Kernel Trick

$$
\begin{aligned}
f(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{T} \phi(\mathbf{x})+b\right) & =\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} \phi\left(\mathbf{x}_{\mathbf{i}}\right)^{T} \phi(\mathbf{x})+b\right) \\
\text { Transformation } & =\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}\right)+b\right)
\end{aligned}
$$

- Instead of transforming the data to new space, obtain a function (K()) that can directly calculate the dot product.
- Both decision function as well as the optimisation function to calculate Lagrange multipliers depends on the dot product of feature vectors, not actual transformed feature vectors.

Various Kernels

- Gaussian
- Radial Basis Function (RBF)
- Polynomial
- Sigmoid
- Hyperbolic tangent
- Laplace RBF

One Class SVM

- Treat all data as normal data
- Transform data using kernel trick such that data points are separated from the origin by a big margin
- Find a decision boundary that separates origin and data points and as far as possible from the center

Decision Boundary and Decision Function

- Decision Boundary

$$
\mathbf{w}^{T} \phi(\mathbf{x})-\rho=0
$$

- Decision Function

$$
f(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{T} \phi(\mathbf{x})-\rho\right)=\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}\right)-\rho\right)
$$

One Class SVM Constraints

- Normal

$$
\mathbf{w}^{T} \phi(\mathbf{x})_{i}-\rho \geq 0
$$

- With slack variable

$$
\mathbf{w}^{T} \phi(\mathbf{x})_{i}-\rho \geq \epsilon_{i}
$$

Minimization Function

$$
L=\frac{\mathbf{w}^{T} \mathbf{w}}{2}+\frac{1}{\nu n} \sum_{i=1}^{n} \underset{\alpha_{i} \geq 0}{\operatorname{Max}} \alpha_{i}\left(\rho-\mathbf{w}^{T} . \phi\left(\mathbf{x}_{\mathbf{i}}\right)\right)-\rho
$$

- Remaining steps are similar to two-class SVM
- The effectiveness of one-class SVM depends on the transformation function's capability to separate origin from normal data points

