
Lecture 3-4 
Anomaly Detection using 
Distance-based Methods 

Ref:	Outlier	Analysis,	Charu	C	Agrawal	
Ref:	Chandola,	Varun,	Arindam	Banerjee,	and	Vipin	Kumar.	"Anomaly	
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Problem Diversity
• Case I: No labels are available 
• Case II: Only normal data points are 

available 
• Case III: Only abnormal data points are 

available 
• Case IV: Both type of labelled data is 

available- delegate to CV/ML people :-) 



Data Types

• Categorical - good, bad, and ugly 
• Numerical - numbers 
• Mixed - numbers as well as categories



Relationship Among Data Points

• No relationship among data points 
• Graph network 
• Spatially ordered data 
• Temporally ordered data points



Is 3 an anomaly?

3, 2, 3, 2, 3, 87, 86, 85 87, 89, 86, 3, 84, 91, 86, 91, 88
time



Spatial Anomaly Example



Network/Graph Anomaly



Related Data

• The relationship may provide anomaly 
detection criteria 

• Such anomalies are also called 
contextual anomalies



Univariate and Multivariate Outliers

• Univariate: Data point consists of one 
variable 

• Multivariate: Data point consists of at 
least two variables



Outlier Evaluation Technique

Precision =
|S(θ) ∩ G |

|S(θ) |

Recall =
|S(θ) ∩ G |

|G |
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(a) Precision-recall (b) Receiver operating characteristic

Figure 1.10: Precision-recall and receiver operating characteristic curves

Algorithm Rank of Ground-truth Outliers

Algorithm A 1, 5, 8, 15, 20
Algorithm B 3, 7, 11, 13, 15

Random Algorithm 17, 36, 45, 59, 66
Perfect Oracle 1, 2, 3, 4, 5

Table 1.2: Rank of ground-truth outliers can be used to construct precision-recall curves

For more effective algorithms, high values of precision may often correspond to low values
of recall and vice-versa. The precision-recall (PR) curve can also be generated by using
thresholds on the rank of the data points, when sorted by outlier score. In the absence of
ties in the outlier scores, a rank-based and score-based PR curve would be identical.

A Receiver Operating Characteristic Curve (ROC) is closely related to a Precision-
Recall curve, but is sometimes visually more intuitive. In this case, the True Positive Rate
is graphed against the False Positive Rate. The true positive rate TPR(t) is defined in
the same way as the recall. The false positive rate FPR(t) is the percentage of the falsely
reported positives out of the ground-truth negatives. In other words, the false-positive rate
is a kind of “bad” recall, which reports the percentage of the negatives that are wrongly
reported as outliers. Therefore, for a data set D with ground truth positives G, these
definitions are as follows:

TPR(t) = Recall(t) = 100 · |S(t) ∩G|
|G| (1.7)

FPR(t) = BadRecall(t) = 100 · |S(t) − G|
|D − G| (1.8)

Therefore, the ROC curve plots the “bad” recall (FPR(t)) on the X-axis, and the “good”
recall (TPR(t)) on the Y -axis. Note that both good and bad recall increase monotonically
with the more relaxed values of the threshold t at which more outliers are reported. There-
fore, the end points of the ROC curve are always at (0, 0) and (100, 100), and a random
method is expected to exhibit performance along the diagonal line connecting these points.
The lift obtained above this diagonal line provides an idea of the additional accuracy of

TPR = 100
|S(θ) ∩ G |

|G |

FPR = 100
|S(θ) − G |
|D − G |



Z-Value Test Limitations

• Data may not be Gaussian distributed 
• Sufficient samples may not be available 

to robustly estimate mean and standard 
deviation 

• Applies to only univariate data points



Nearest Neighbour-based 
Anomaly Detection

• Need a similarity measure defined between 
two data points! 

• For continuous attributes, Euclidean 
distance is popular! 

• For categorical data, matching techniques 
are used, e.g., hamming distance 

• The distance measure should be symmetric



Assumption: Normal data 
instances occur in dense 

neighbourhood! 



Two Approaches

• Distance of nth nearest neighbour as 
anomaly score 

• Relative density based anomaly score



K-NN Distance-based Anomaly

• A non-parametric model 
• For each data point, find kth nearest 

neighbour 
• K is generally a small number 
• A large distance means anomaly



Density-based Anomaly

• Calculate density of neighbourhood of 
each data point 

• Low density indicates anomaly 
• How to calculate density?



Using Inverse of KNN distance 
as density indicator!

Prob: Many points in C1 will have lower density than point p2! 
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Fig. 7. Advantage of local density-based techniques over global density-based techniques.

Fig. 8. Difference between the neighborhoods computed by LOF and COF.

by the volume of this hyper-sphere. For a normal instance lying in a dense region, its
local density will be similar to that of its neighbors, while for an anomalous instance,
its local density will be lower than that of its nearest neighbors. Hence the anomalous
instance will get a higher LOF score.

In the example shown in Figure 7, LOF will be able to capture both anomalies, p1
and p2, due to the fact that it considers the density around the data instances.

Several researchers have proposed variants of the LOF technique. Some of these
variants estimate the local density of an instance in a different way. Some variants
have adapted the original technique to more complex data types. Since the original
LOF technique is O(N 2) (N is the data size), several techniques have been proposed
that improve the efficiency of LOF.

Tang et al. [2002] discuss a variation of the LOF, which they call Connectivity-based
Outlier Factor (COF). The difference between LOF and COF is the manner in which the
k neighborhood for an instance is computed. In COF, the neighborhood for an instance
is computed in an incremental mode. To start, the closest instance to the given instance
is added to the neighborhood set. The next instance added to the neighborhood set is
such that its distance to the existing neighborhood set is minimum among all remaining
data instances. The distance between an instance and a set of instances is defined as
the minimum distance between the given instance and any instance belonging to the
given set. The neighborhood is grown in this manner until it reaches size k. Once the
neighborhood is computed, the anomaly score (COF) is computed in the same manner
as LOF. COF is able to capture regions such as straight lines, as shown in Figure 8.

A simpler version of LOF was proposed by Hautamaki et al. [2004], which calculates
a quantity called Outlier Detection using In-degree Number (ODIN) for each data in-
stance. For a given data instance, ODIN is equal to the number of k nearest neighbors
of the data instance which have the given data instance in their k nearest neighbor list.

ACM Computing Surveys, Vol. 41, No. 3, Article 15, Publication date: July 2009.

Ref:	Anomaly	Detection:	A	Survey.	Chandola	et	al.

Soln: calculate density relative to its neighbours! 



Relative Local Density

• Calculate the distance d of kth nearest 
neighbour 

• Calculate the volume v of the 
hypersphere with radius d 

• The local density at that point is 
calculated as k/v 



Local Outlier Factor (LOF)

• Find the local density of k nearest 
neighbours 

• Ratio of average local density of k 
nearest neighbours and the given point 
is LOF score of the point 

• Anomaly will have higher LOF score



P2 will have high LOF score in 
comparison to points in C1. 
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Fig. 7. Advantage of local density-based techniques over global density-based techniques.

Fig. 8. Difference between the neighborhoods computed by LOF and COF.
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Pros and Cons
• Pros 

• Unsupervised 
• Data driven, no assumption about 

distribution 
• Cons 

• If normal instances do not have enough 
neighbours, the method will fail



Clustering-based Anomaly 
Detection Methods

• Group similar data instances into 
clusters 

• Analyse the clustered data to find 
anomalies



Case I: Normal data instances lie close to their 
nearest cluster centroid, while anomalies are 
far away from their closest cluster centroid.

• Consists of two steps  

• First step is to find clusters using any 
standard algorithm 

• Anomaly score is the distance from the 
nearest centroid



How to find the clusters?



Linde–Buzo–Gray Algorithm for 
k-Means Clustering

1. Guess the cluster centroids C={c1,c2,...,cK} ;  

2. REPEAT 
- For each training vector xj, find the nearest cluster centroid: qj 
= arg mink ||xj - ck|| 

- For each cluster k, re-calculate the cluster centroid from the 
vectors assigned to the cluster: ck= mean {xj| qj=k}  

- UNTIL convergence



Obtaining Cluster Centroids
Input vectors:

Initial centroids:

Obtain clusters: 

Update centroids:

Calculate distortion:

The codebook:

Repeat until distortion < threshold  

S = {Xi ∈ Rd | i=1,	2,	...,	n}

C = {Cj ∈ Rd | j=1,	2,	...,	k}

Xi ∈ Sq	if	 | |xi − Cq | |p ≤ | |Xi − Cj | |p

Cj =
1

|Si | ∑
Xi∈Sj

Xi

Dk =
K

∑
j=1

∑
Xi∈Si

| |Xi − Cj | |p

C = {Cj ∈ Rd | j=1,	2,	...,	k}



Take the distance from nearest 
centroid as the anomaly score!



Limitations

• Only works with spherical clusters 
• Difficult to know k in advance 
• To find k, use hierarchical or 

agglomerative clustering



Case II: Normal data instances belong to 
a cluster in the data, while anomalies do 

not belong to any cluster.
• Use clustering algorithms that do not force 

each data point to be associated with a 
cluster 

• Data points not associated with any cluster 
are anomalies 

• Example: DBSCAN



Density-based spatial clustering of 
applications with noise (DBSCAN)

• Divides the points into three types: core 
points, border points, and noise 

• If there are more than MinPts around a point 
within eps distance, it’s a core point 

• If a point is not a core point, but within eps 
distance from a core point, it is a border point 

• Else, it is a noise, outlier, or anomaly



Example
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Another Example

Original Points Point types: core, 
border and noise

Eps = 10, MinPts = 4



Density-Connected points
• Density edge 

• We place an edge between two core 
points q and p if they are within 
distance Eps. 

• Density-connected 

• A point p is density-connected to a 
point q if there is a path of edges 
from p to q

p

q
p1

p q

o



DBSCAN Algorithm

• Label points as core, border and noise 

• For every core point p that has not been assigned 
to a cluster 

• Create a new cluster with the point p and all the 
points that are density-connected to p. 

• Repeat until all points are visited. 

• Points not assigned to any cluster are anomalies. 



Benefits of DBSCAN

• Can find arbitrary shape clusters, while 
k-means (and most other) can only find 
spherical clusters 

• It is effective in handling noise as it does 
not forces cluster association to each 
data point



The previous two techniques 
will not work if the anomalies 

also form a cluster!



Case III: Normal data instances belong to large 
and dense clusters, while anomalies either 

belong to small or sparse clusters.

• The goal is to tag the clusters as 
anomalous  

• Anomaly clusters are generally small and 
sparse 

• A possible metric is size/distortion or size/
variance of each cluster.  


