
Lecture 5-6-7  
Generative Models 

Ref:	Outlier	Analysis,	Charu	C	Agrawal	
Ref:	Outlier	Analysis:	A	Review,	Chandola	et	al.



Limitations of Euclidean distance

• Gives equal weightage to each 
dimension 

• A feature in lower range will have 
minimal effect on the score 

• Features may be correlated

dxy = (x1 − y1)2 + (x2 − y2)2 + . . . (xn − yn)2



Range Problem

Price (INR) Weight (g) Price (lakh) Weight (kg)

Phone 1 36000 400 0.36 0.4

Phone 2 37000 420 0.37 0.42

Phone 3 60000 350 0.60 0.35

Phone 4 20000 510 0.20 0.51

d12 = 1000 d′�12 = 0.022



Correlated Features
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Euclidean distance of X and Y is the same from C in both the 
figures!



Mahalanobis Distance

• It is a metric to measure distance 
between a point and a distribution 

• It is very effective for multivariate 
distributions



Mahalanobis Distance

D2 = (x − c)TΣ−1(x − c)

where	Σ	is	the	covariance	matrix.



Generative Models



Underlying Principle

“An anomaly is an observation which is 
suspected of being partially or wholly 
irrelevant because it is not generated by 
the stochastic model assumed” 
Ref: Anscombe and Guttman 1960



Main Assumption

Normal data instances occur in high 
probability regions of a stochastic model, 
while anomalies occur in the low 
probability regions of the stochastic 
model.



Probabilistic Generative Models

• Train a generative probabilistic model 
• Calculate probability (or probability 

density) of a given data point 
• Inverse of this is the anomaly score



How to train a generative model

• Assume an underlying model that lead 
to generation of the dataset 

• The model is generally a mixture of 
components (e.g. Gaussians) 

• The model parameters are learned such 
that the dataset has maximum likelihood 
of being generated



Probability Mixture Models

• Probabilistic version of clustering 
• Dataset is modelled as mixture of 

Gaussians 
• Inverse of probability density can be 

used as anomaly score 



Two Paradigms

1. Mixture components may only model 
normal data 

2. There can be separate components to 
model normal as well as abnormal data



Separate Models

• Each data point is an anomaly with a 
prior probability. 

• Since we do not know which data is 
generated by which distribution, we use 
EM to find A and M.

D = λA + (1 − λ)M



Gaussian Mixture Model (GMM)

• A probabilistic generative model 
• Assumes the data is generated by a 

mixture of Gaussian distributions 
• The mixture components can represent 

normal data only or both normal data 
and anomalies



The Gaussian Distribution
• Univariate density

𝒩(x |μ, σ) =
1

2 * πσ2
e− (x − μ)2

2σ2

• Multivariate density

𝒩(x |μ, Σ) =
1

2 * π |Σ |
e− 1

2 (x−μ)TΣ−1(x−μ)

Mean Variance

Mean Covariance



Probability density when the data is 
represented by a mixture of Gaussians

Number of Gaussians

f(x) =
K

∑
k=1

πk 𝒩(x |μk, Σk)

Mixing coefficient

0 ≤ πk ≤ 1,
K

∑
k=1

πk = 1



Data Likelihood: probability of observing 
data given a GMM

• Likelihood

• Log Likelihood

p(X /μ, Σ, π) =
N

∏
n=1

f(xn)

ln p(X /μ, Σ, π) =
N

∑
n=1

f(xn) =
N

∑
n=1

ln (
K

∑
k=1

πk 𝒩(xn |μk, Σk))



Parameter Estimation

• Obtain parameters such that the log 
likelihood is maximised  

• No closed form solution is possible for 
GMM



If we know which data point is generated 
by which Gaussian distribution, we can 

easily calculate the parameters! 

Expectaation Maximization



Generic EM algorithm

1. Initialise the parameters (randomly of 
based on prior knowledge) 

2.E-Step: estimate the latent variables 
3.M-step: update the parameters 

according to the latent variables 
estimated in the E step 

4.Repeat 2-3 until convergence



How to estimate latent parameter 
(component for each data point)?
• PDF of being generated by kth component

πk 𝒩(x |μk, Σk)

γk(x) =
πk 𝒩(x |μk, Σk)

∑K
j=1 πj 𝒩(x |μj, Σj)

• Probability of x being generated by kth component (also 
called responsibility of nth component)



Each data point is assigned to 
all the clusters, also known as 

soft clustering!



M-Step
• Update the parameters according to the 

estimated latent variable 
• In current case, we have responsibilities 

of each component for a given data 
point 

• Use the responsibilities as fraction of the 
data point being generated by that 
component



Update Weight

πj =
1
N

N

∑
n=1

γj(xn)



Update Mean

μj =
∑N

n=1 γj(xn)xn

∑N
n=1 γj(xn)



Update Covariance

Σj =
∑N

n=1 γj(xn)(xn − μj)(xn − μj)T

∑N
n=1 γj(xn)



Calculate the log likelihood 
again, stop if there is no 

change!


