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Warmup- Covariance Vs Correlation

• Both the terms capture relationship between two variables of 
a dataset, how change in one variable is related to change in 
another 

• Covariance captures the relationship (variability) in actual 
units, while correlation captures relationship strength on a 
standardised scale (-1 to +1) 

• We particularly use correlation when we have to compare 
relationship across datasets

Cov(X, Y ) =
N

∑
i=1

(xi − x̄)(yi − (̄x))
N

Corr(X, Y ) =
Cov(X, Y )

σx σy



Data Compression
• Represent the same data in a fewer 

number of bits

Encoder
Original  

data
Decoder Reconstructed 

data



Types
• Lossy compression: causes permanent 

loss of information, the reconstructed 
data is close to original, but never the 
same 

• Lossless compression: the reconstructed 
data is exactly same as original data 

• Examples?



Main Idea (Lossy Compression)

• Train the encoder/decoder to compress 
the normal data. 

• When used on normal data, we will get 
low reconstruction error. 

• When used on the abnormal data, the 
reconstruction error will be large. 



Main Idea (Lossless Compression)

• Train the encoder/decoder to compress 
the normal data. 

• When used on normal data, we will get 
compressed easily. 

• When used on the abnormal data, the 
data will not be compressed well.  



Principle Component Analysis
• Represent d dimensional data with k 

dimensions 
• Approximate the original d dimensional 

data with k dimensional data 
• The error in approximation is anomaly 

score 



Properties of the new Axis system
• The dimensions are orthogonal to each 

other 
• Hence, the variance of the transformed 

data is equal to the Eigen vector and 
covariance is zero 

• In other words, there is no correlation 
left among the axis



Projection to New Axis System
• The first step of PCA is to project the 

data to a new axis system 
• The Eigen vectors provide the new axis 

system with orthonormal dimensions 
• For lossless representation, the number 

of axis in the new representation system 
is the same as old one



Steps
1.Mean-centre the data 
2.Calculate d*d covariance matrix 
3.Obtain Eigen values and Eigen vectors of the 

covariance matrix 
4.Sort the Eigen vectors in decreasing order of Eigen 

value and keep top k (k<d) in a matrix W 
5.Project data to the lower dimension, Dp’=DpW 
6.Reconstruct the original data with Dp”=Dp’ W-1(if k<d, 

W-1 won’t be a square matrix, use zero padding to get 
inverse) 

7.Take the reconstruction loss as anomaly score L = |Dp-
Dp”|



Observation

• The variances of data points along the 
Eigen vectors with low Eigen values are 
low (variance = Eigen value)  

• If a data point deviates too much from the 
mean value along this direction, it may be 
an anomaly



Another Anomaly Score
1. Take the d-k Eigen vectors corresponding to d-k 

lowest values 

2. Take the data point, project along these Eigen 
vectors 

3. Calculate the squared sum of these projections 
normalised by corresponding Eigen value

S =
k

∑
j=1

p2
j

λj



PCA Vs Linear Regression

• In PCA, k can be anything, linear 
regression restricts k to d-1 

• In Linear regression the d-1 dimensions are 
original dimensions whereas in PCA these 
are new orthonormal dimensions obtained 
through PCA



PCA Example

A simple principal component analysis example 

Brian Russell, August, 2011. 

 

Introduction 

 

In this tutorial, we will look at the basics of principal component analysis using a simple 

numerical example.  In the first section, we will first discuss eigenvalues and 

eigenvectors using linear algebra.  In the second section, we will look at eigenvalues and 

eigenvectors graphically.  Finally, in the last two sections, we will show how an 

understanding of the eigenvalue/eigenvector problems leads us to principal component 

analysis. 

 

Eigenvalues and eigenvectors – the linear algebra approach 

 

The example we will be using is taken from seismic analysis, were we consider how to 

compute the principal components of M seismic attributes, each with N samples.  Before 

discussing principal component analysis, we need to understand the concepts of 

eigenvectors and eigenvalues.   

 

Let us start by considering the following two three-sample attribute traces (that is, N = 3 

and M = 2): 
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These two attribute vectors can be combined into the matrix S as 
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From the matrix of attributes, we then compute the following covariance matrix (note that 

to make this problem numerically easier we have not normalized C by dividing it by N = 

3): 

1 

2D data with 3 data points



Eigen Vector

• In the second multiplication, the resulting vector is just a scaled 
version of the multiplying vector, such vectors are called Eigen vectors 

• A scaled version of Eigen vector is again an Eigen vector, therefore, 
most libraries give unit vectors (with unit magnitude)

Figure 2.2: Example of one non-eigenvector and one eigenvector

Figure 2.3: Example of how a scaled eigenvector is still and eigenvector

2.2.1 Eigenvectors
As you know, you can multiply two matrices together, provided they are compatible
sizes. Eigenvectors are a special case of this. Consider the two multiplications between
a matrix and a vector in Figure 2.2.

In the first example, the resulting vector is not an integer multiple of the original
vector, whereas in the second example, the example is exactly 4 times the vector we
began with. Why is this? Well, the vector is a vector in 2 dimensional space. The

vector (from the second example multiplication) represents an arrow pointing

from the origin, , to the point . The other matrix, the square one, can be
thought of as a transformation matrix. If you multiply this matrix on the left of a
vector, the answer is another vector that is transformed from it’s original position.

It is the nature of the transformation that the eigenvectors arise from. Imagine a
transformation matrix that, when multiplied on the left, reflected vectors in the line

. Then you can see that if there were a vector that lay on the line , it’s
reflection it itself. This vector (and all multiples of it, because it wouldn’t matter how
long the vector was), would be an eigenvector of that transformation matrix.

What properties do these eigenvectors have? You should first know that eigenvec-
tors can only be found for square matrices. And, not every square matrix has eigen-
vectors. And, given an matrix that does have eigenvectors, there are of them.
Given a matrix, there are 3 eigenvectors.

Another property of eigenvectors is that even if I scale the vector by some amount
before I multiply it, I still get the same multiple of it as a result, as in Figure 2.3. This
is because if you scale a vector by some amount, all you are doing is making it longer,
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Eigen Values

• We see that even in both cases, the transformation of the Eigen 
vector is by the same amount 

• This scaling factor is property of the Eigen vector, and it is called 
Eigen value 
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Finding Eigen Values
C = ( 2 −1

−1 2 )
Cv = λv ⇒ |C − λI | = 0

A simple principal component analysis example 

Brian Russell, August, 2011. 

Of course, in most cases, especially if there are more than two attributes, the solution is 

much more difficult and we need a more foolproof method.  To solve for the eigenvalues, 

we use the determinant of the matrix in equation (3) to give a quadratic equation which 

can be solved as follows 
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As expected, the eigenvalues are as we predicted earlier, although we have called the 

larger of the two the first eigenvalue.  To solve for the eigenvectors, we simply substitute 

the two eigenvalues into the matrix equation (3), as before.  It is also general practice to 

find the simplest eigenvector in each case by normalizing it so that the sum of the squares 

of its components equals 1.  Thus, we get: 
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These two eigenvectors can be put into matrix form as 
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The eigenvector matrix is orthonormal, which means that when it is multiplied by its 

transpose we get the identity matrix, or   
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Also, the transpose and inverse of U are identical. That is: 
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Eigenvalues and eigenvectors – the visual approach 
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A simple principal component analysis example 

Brian Russell, August, 2011. 
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Also, the transpose and inverse of U are identical. That is: 
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Eigenvalues and eigenvectors – the visual approach 
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Axis Transformation

A simple principal component analysis example 

Brian Russell, August, 2011. 
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In matrix form, the principal component matrix is the product of the attribute matrix A 

and the eigenvector matrix U: 
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Numerically, the individual principal component traces or vectors are 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

1
1
0

2
1

 and 
1
1

2

2
1

21 PP . 

Note also that the principal component matrix has the property that when it is multiplied 

by its transpose we recover the eigenvalues in diagonal matrix form: 
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We have thus transformed the original attributes into new traces which are orthogonal 

(that is, their cross-correlation is equal to 0) and auto-correlate to the successive 

eigenvalues.  As a final point, note that we can also recover the attributes from the 

principal components by a linear sum.  First, recall that we showed that the inverse and 

transpose of the eigenvector matrix are identical.  Therefore, we can write  
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In other words, we can recover the attributes as follows: 

( ) ( ).
2
1

and  ,
2
1

1221 PPYPPX −=+=  

 

Principal component analysis using geometry 
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