Lecture 11 Binary Trees

Binary Tree Definition

- Each internal node has at most two children
- The children of a node are ordered as left child and right child

Binary Tree Implementation

Node

struct Node{ Elem elt; Node* par; Node* left; Node* right;

Position for the Node

template <typename E> class Position<E> { private: Node* v; public: E& operator*(); Position left(); Position right(); Position parent(); bool isRoot(); bool isExternal(); friend class Tree; **};**

Binary Tree

template <typename E> class Tree<E> { private: Node* _root; public: int size(); bool empty(); Position root(); PositionList positions(); **};**

Linked Structure for Binary Trees

Can we implement a Binary Tree with a Vector?

Array-Based Representation of Binary Trees

• Nodes are stored in an array A

Node v is stored at A[rank(v)]

- rank(root) = 1
- if node is the left child of parent(node), rank(node) = 2 · rank(parent(node))
- if node is the right child of parent(node), rank(node) = 2 · rank(parent(node)) + 1

Properties of Binary Trees

What is the maximum tree height for n nodes?

h ≤ n-1

What is the minimum tree height for n nodes?

$h \ge \log(n+1) - 1$

$h+1 \le n \le 2^{h+1}-1$ h = heightn = number of nodes

Minimum number of external nodes in a tree of height h?

Maximum number of external nodes in a tree of height h?

2^h

$1 \le n_E \le 2^h$

n_E=No. of external nodes

Minimum number of internal nodes in a tree of height h?

Maximum number of internal nodes in a tree of height h?

2^h-1

$1 \le n_1 \le 2^h - 1$

$n_1 = No.$ of internal nodes

Height log (n+1) - $1 \le h \le (n-1)/2$

External Nodes $h+1 \le n_E \le 2^h$ Internal Nodes $h \le n_I \le 2^{h-1}$

Complete Binary Tree?

How many Binary Trees are possible given n nodes?

Ordered Tree

- children have certain order as being first, second, etc.
- the leftmost child is called the "first"
- e.g. book

Ordered Family Tree

Numbered Ordered Tree

Binary Search Tree

Binary Search Tree

- every node stores a key
- left subtree < node
- right subtree > node

What is the time complexity of search?

Find node with minimum number?

How many BSTs are possible given n nodes?