Lecture 12 Priority Queue

Slides modified from © 2010 Goodrich, Tamassia

Arrays Queues Stacks

Trees Algorithm Analysis

Scheduler

-ready programs are added to the scheduler

-it decides which program to execute next

SRTF Scheduling Policy

Main Operations insert() removeMin()

Priority Queue ADT

- a collection of entries
- entry = (key, value)
- main methods
 –insert(k, v)
 - -removeMin()

- additional methods
 -min()
 - -size(),
 - -isEmpty()

Example

Method	Return Value	Priority Queue Contents
insert(5,A)		{ (5,A) }
insert(9,C)		{ (5,A), (9,C) }
insert(3,B)		{ (3,B), (5,A), (9,C) }
min()	(3,B)	{ (3,B), (5,A), (9,C) }
<pre>removeMin()</pre>	(3,B)	{ (5,A), (9,C) }
insert(7,D)		{ (5,A), (7,D), (9,C) }
<pre>removeMin()</pre>	(5,A)	{ (7,D), (9,C) }
<pre>removeMin()</pre>	(7,D)	{ (9,C) }
<pre>removeMin()</pre>	(9,C)	{ }
<pre>removeMin()</pre>	null	{ }
isEmpty()	true	{ }

Keys

- specific attribute of the element
- many times assigned to the element by user of application
- key may change for the same element, e.g. popularity

Total Order Relations

- 1. Comparability property: either $x \le y$ or $y \le x$
- 2. Antisymmetric property: $x \le y$ and $y \le x \Rightarrow x = y$
- 3. Transitive property: $x \le y$ and $y \le z \Rightarrow x \le z$

- keys with total order
 –weight
- keys not having total order
 - -2D point

Comparator ADT

- implements isLess(p,q)
- can derive other relations from this:

for STL, in C++ overload
 "()"

Comparator Examples

```
class LeftRight {
public:
   bool operator()(Point2D& p, Point2D& q)
   { return p.getX() < q.getX(); }</pre>
};
class BottomTop {
public:
   bool operator()( Point2D& p, Point2D& q)
   { return p.getY() < q.getY(); }
};
```

Sort Sequence L with **Priority Queue P** while !L.empty () $e \leftarrow L.front();$ L.eraseFront() P.insert (e) while !P.empty() $e \leftarrow P.removeMin()$ L.insertBack(e)

What is the time complexity of this sorting?

Implementation with sorted sequence 1 2 3 4 5

insert()?removeMin()?

Insertion-Sort

 insert at right place to keep the list sorted
 remove head repeatedly

Insertion-Sort Example

Sequence S (7,4,8,2,5,3,9)

Input:

Phase 1

(a)

(b)

(C)

(d)

(e)

(f)

(g)

(4,8,2,5,3,9) (8,2,5,3,9) (2,5,3,9) (5,3,9) (3,9) (9)

Phase 2

(a) (2) (b) (2,3) (g) (2,3,4,5,7,8,9) (7)
(4,7)
(2,4,7,8)
(2,4,5,7,8)
(2,3,4,5,7,8)
(2,3,4,5,7,8,9)

Priority queue P

()

(3,4,5,7,8,9) (4,5,7,8,9)

Time complexity Best case? Worst case?

Implementation with unsorted sequence

insert()?removeMin()?

Selection-Sort

1. insert elements in unsorted list

2. remove min repeatedly

Selection-Sort Example

Input:	Sequence L (7,4,8,2,5,3,9)	Priority Queue P ()
Phase 1 (a) (b)	(4,8,2,5,3,9) (8,2,5,3,9)	(7) (7,4)
 (g)	0	(7,4,8,2,5,3,9)
Phase 2 (a) (b) (c) (d) (e) (f) (g)	(2) (2,3) (2,3,4) (2,3,4,5) (2,3,4,5,7) (2,3,4,5,7,8) (2,3,4,5,7,8,9)	(7,4,8,5,3,9) (7,4,8,5,9) (7,8,5,9) (7,8,9) (8,9) (9) ()

What is time complexity of selection sort? Worst case? Best case?

Give two advantages of selection sort over others?

Summary: either insert is O(n) or removeMin() is O(n)!

Can we do better?

Time complexity removeMin()? insert()?

Is O(h) good enough?

BST Order Restrictions

1. left subtree ≤ node
 2. right subtree ≥ node

A simpler order restriction...

1. parent \leq child

Remake this tree with new order restriction...

Heap

- 1. Order restriction: $K(parent) \leq K(child)$
- 2. Structural restriction: complete binary

Height of Heap $h \le \log n$, so, h is O(log n)

Heaps and Priority Queues

- Heap can be used to implement a priority queue
- store a (key, element) item at each internal node
- keep track of the last node

The last node of a heap is the rightmost node of maximum depth!

last node

5

insert()

1.find insertion node2.add new element (k) at this node3.restore heap order

Finding the Insertion Node

- go up until node becomes a left child or the root is reached
- if root is reached, go left until leaf node is reached
- if node becomes left child, go to the right sibling and go down left until a leaf is reached

time complexity of finding the insertion node

Insertion into a Heap

up-heap bubbling (4,C) (5,A)(6,Z)(15,K)(7,Q) (9,F)(20,B)(2,T)(13,W) (16,X) (25,J)(12,H) (11,S)(14,E)

up-heap bubbling (4,C) (5,A)(6,Z)(15,K)(7,Q) (9,F)(2,T)(16,X (13,W (25,J)(12,H) (11,S)(20,B) (14,E)

up-heap bubbling (4,C) (5,A)(2,T)(15,K)(7,Q) (9,F)(6,Z)(16,X (20,B) (25,J)(12,H) (11,S)(13,W (14,E)

up-heap bubbling

Another View of Insertion

Correctness of Upheap

Always replaced with smaller key!

Since a heap has height O(log n), up-heap runs in O(log n) time

removeMin()

Removal from a Heap

Removal from a Heap

Correctness of Downheap

Since a heap has height O(log n), down-heap runs in O(log n) time

Keeping track of last node after removeMin()

Similar to finding node for insertion

Vector Implementation of **Complete Binary** Tree

- start at rank 1
- for the node at rank *i*

-the left child is at rank 2*i*

-the right child is at rank 2i + 1

insert() and removeMin() on vector heap!

How to build a heap?

insert repeatedly O(n log n)

Build a heap with the below keys!

(16, 15, 4 12, 6, 7, 23, 20, 25, 9, 11, 17, 5, 8, 14)

2. Bottom-up Heap Construction

12)

in phase i, pairs of heaps with 2ⁱ -1 keys are merged into heaps with 2ⁱ⁺¹-1 keys

Analysis 1 -first right, then left until leaf

Analysis 2 -sum of heights of all nodes

h $\sum j 2^{h-j}$ <u>j=0</u> 3 ► 3*1 2 2 2*2 1 1*4 1 1 1 0*8 $\left(0 \right)$ 0 0 $\left(0 \right)$ (0)0 0 0

sum of heights O(n)

How to merge two heaps?

Time Complexity??

Merge two heaps in O(n)

Recall Priority Queue ADT

- a collection of entries
- entry = (key, value)
- main methods
 –insert(k, v)
 - -removeMin()

- additional methods
 -min()
 - -size(),
 - -isEmpty()

Heap-Sort

while !L.empty () $e \leftarrow L.front();$ L.eraseFront() P.insert (e) while !P.empty() $e \leftarrow P.removeMin()$ L.insertBack(e)

Check if a given Binary Tree is Heap

Converting min-heap into max-heap

Implementing Heap-Sort In-Place

- Use left side array for heap and right side array for list
- move from left to right, and then right to left

4721365 4 7 2 1 3 6 5 47 21365 7421365 7461325

What should be the next step?

What is the time complexity? n log n + n log n

Can we make it faster? n + n log n

Bottom-up Heap Construction for a Linked List implementation

- BottomUpHeap(L):
- if *L*.empty() then return an empty heap
- $e \leftarrow L.front()$
- L.pop front()
- Split L into two lists, L1 and L2, each of size (n 1)/2
- $T1 \leftarrow BottomUpHeap(L1)$
- $T2 \leftarrow BottomUpHeap(L2)$
- Create binary tree *T* with root *r* storing *e*, left subtree *T*1, and right subtree *T*2
- Perform a down-heap bubbling from the root r of T , if necessary
- return T

How to find top k students who will be allowed to go for 6 month internship? E.g. A = [8.1, 7.2, 7.5, 9, 9.8, 10, 5.4], k = 3 Output = [10, 9.8, 9]

- Solution 1: Sort the numbers => O(n log n)
- Solution 2: Select min k times => O(nk)
- Solution 3: Build min-heap=> O(n+k log n)
- Solution 4: Build min-heap of first k elements, for rest:
 - if < root then ignore else replace root with the number and heapify
 - $-O(k + (n-k) \log k)$
- More?

A company has n items (w_{1.}, w_n) and wants to make packages of minimum weight W. Give a fast algorithms to do this in minimum number of steps.

- Sort, add first two, sort again, stop when first element in greater than W
 – O(xnlog n)
- Create min heap, compare W with the root, if smaller, remove two elements, add them, and insert into the heap, repeat the procedure

– O(n+x log n)