Lecture 12 Priority Queue

Linked Lists

Arrays Stacks Queues

Trees

Algorithm Analysis

Scheduler

-ready programs are added to the scheduler
-it decides which program
to execute next

SRTF Scheduling Policy

Schedule

Main Operations

insert()

removeMin()

Priority Queue ADT

- a collection of entries
- entry = (key, value)
- main methods
-insert(k, v)
-removeMin()
- additional methods
$-\min ()$
- size(),
- isEmpty()

Example

Method	Return Value	Priority Queue Contents
insert(5,A)		$\{(5, A)\}$
insert(9,C)		$\{(5, A),(9, C)\}$
insert(3, B)		$\{(3, B),(5, A),(9, C)\}$
$\min ()$	$(3, B)$	$\{(3, B),(5, A),(9, C)\}$
removeMin()	$(3, B)$	\{ (5,A), (9,C) \}
insert(7,D)		\{ (5,A), (7, D) , (9, C) \}
removeMin()	$(5, A)$	$\{(7, D),(9, C)\}$
removeMin()	$(7, D)$	$\{(9, C)\}$
removeMin()	$(9, C)$	\{ \}
removeMin()	null	\{ \}
isEmpty()	true	\{ \}

Keys

- specific attribute of the element
- many times assigned to the element by user of application
- key may change for the same element, e.g. popularity

Total Order Relations

1. Comparability property: either $x \leq y$ or $y \leq x$
2. Antisymmetric property:

$$
x \leq y \text { and } y \leq x \Rightarrow x=y
$$

3. Transitive property:

$$
x \leq y \text { and } y \leq z \Rightarrow x \leq z
$$

- keys with total order -weight
- keys not having total order
-2D point

Comparator ADT

- implements isLess(p,q)
- can derive other relations from this:

$$
-(p==q) ?
$$

- for STL, in C++ overload "()"

Comparator Examples

class LeftRight \{ public:
bool operator)(Point2D\& p, Point2D\& q)
\{ return p.getX() < q.getX(); \}
\};
class BottomTop \{ public:
bool operator)(Point2D\& p, Point2D\& q)
\{ return p.getY() < q.getY(); \}
\};

Sort Sequence L with

 Priority Queue P while !L.empty () $e \leftarrow$ L.front();L.eraseFront() P.insert (e)
while !P.empty() $e \leftarrow$ P.removeMin() L.insertBack(e)

What is the time complexity of this sorting?

Implementation with sorted sequence

- insert()?
- removeMin()?

Insertion-Sort

1. insert at right place to keep the list sorted
2. remove head repeatedly

Insertion-Sort Example
 Sequence S
 Input:

Phase 1

(a)	$(4,8,2,5,3,9)$
(b)	$(8,2,5,3,9)$
(c)	$(2,5,3,9)$
(d)	$(5,3,9)$
(e)	$(3,9)$
(f)	(9)
(g)	()

(7)
$(4,7)$
$(4,7,8)$
(2,4,7,8)
(2,4,5,7,8)
(2,3,4,5,7,8)
(2,3,4,5,7,8,9)
Phase 2
(a)
(b)
$(2,3)$
$(2,3,4,5,7,8,9)$
(g)
(4,5,7,8,9)

Time complexity

Best case?

Worst case?

Implementation with unsorted sequence

- insert()?
- removeMin()?

Selection-Sort

1. insert elements in unsorted list
2. remove min repeatedly

Selection-Sort Example

Sequence L
Input:
(7,4,8,2,5,3,9)
Phase 1
(a)
(b)
(g)
(4,8,2,5,3,9)
(7)
(8,2,5,3,9)
$(7,4)$
(7,4,8,2,5,3,9)
Phase 2

(a)	(2)	$(7,4,8,5,3,9)$
(b)	$(2,3)$	$(7,4,8,5,9)$
(c)	$(2,3,4)$	$(7,8,5,9)$
(d)	$(2,3,4,5)$	$(7,8,9)$
(e)	$(2,3,4,5,7)$	$(8,9)$
(f)	$(2,3,4,5,7,8)$	(9)
(g)	$(2,3,4,5,7,8,9)$	0

What is time complexity of selection sort?

Worst case?

Best case?

Give two advantages of selection sort over others?

Summary: either

 insert is $O(n)$ or removeMin() is $O(n)$!Can we do better?

Lets Try BST

Time complexity removeMin()? insert()?

$$
\begin{aligned}
& \text { Is } \mathrm{O}(\mathrm{~h}) \text { good } \\
& \text { enough? }
\end{aligned}
$$

Look at this tree...

BST Order Restrictions

1. left subtree \leq node
2. right subtree \geq node

A simpler order restriction...

 1. parent \leq child
Remake this tree with new
 order restriction...

Heap

1. Order restriction: K (parent) $\leq K$ (child)
2. Structural restriction: complete binary

Height of Heap
 $h \leq \log n$, so, h is $O(\log n)$

depth keys

Heaps and Priority Queues

- Heap can be used to implement a priority queue
- store a (key, element) item at each internal node
- keep track of the last node

The last node of a heap is

 the rightmost node of maximum depth!

insert()

1.find insertion node
2.add new element (k) at this node
3.restore heap order

Finding the Insertion Node

- go up until node becomes a left child or the root is reached
- if root is reached, go left until leaf node is reached
- if node becomes left child, go to the right sibling and go down left until a leaf is reached

time complexity of finding the insertion node

Insertion into a Heap

up-heap bubbling

Another View of Insertion

Correctness of Upheap

Always replaced with smaller key!

Since a heap has height O(log n), up-heap runs in $O(\log n)$ time

removeMin()

Removal from a Heap

Removal from a Heap

down-heap bubbling

Correctness of Downheap

Since a heap has height O(log n), down-heap runs in $O(\log n)$ time

Keeping track of last node after removeMin()

Similar to finding node for insertion

Vector Implementation of Complete Binary Tree

- start at rank 1
- for the node at rank i
-the left child is at rank $2 i$
-the right child is at rank $2 i+1$

insert() and removeMin() on vector heap!

How to build a heap?

1. insert repeatedly O(n log n)

Build a heap with the below keys!

(16, 15, 4 12, $6,7,23,20,25,9,11,17$,

$$
5,8,14)
$$

2. Bottom-up Heap Construction

Building a Heap - Bottomup

Building a Heap - Bottomup

in phase i, pairs of heaps with $2^{i}-1$ keys are merged
into heaps with $2^{i+1}-1$ keys

Analysis 1

-first right, then left until leaf

Analysis 2 -sum of heights of all nodes

sum of heights

O(n)

How to merge two heaps?

Time Complexity??

Merge two heaps in $\mathrm{O}(\mathrm{n})$

Min Heap

Max Heap

Recall Priority Queue ADT

- a collection of entries
- entry = (key, value)
- main methods
- insert(k, v)
-removeMin()
- additional methods
$-\min ()$
- size(),
- isEmpty()

Heap-Sort

while !L.empty ()
$e \leftarrow$ L.front();
L.eraseFront()
P.insert (e)
while !P.empty()
$e \leftarrow$ P.removeMin()
L.insertBack(e)

Check if a given Binary Tree is Heap

Converting min-heap into max-heap

Implementing HeapSort In-Place

- Use left side array for heap and right side array for list
- move from left to right, and then right to left

$$
\begin{aligned}
& 14721365 \\
& 4 \mid 721365 \\
& 47 \mid 21365 \\
& 74 \mid 21365 \\
& 7461325
\end{aligned}
$$

What should be the next step?

What is the time complexity? $n \log n+n \log n$

Can we make it faster?

$$
n+n \log n
$$

Bottom-up Heap Construction for a Linked List implementation

- BottomUpHeap(L):
- if L.empty() then return an empty heap
- e \leftarrow L.front()
- L.pop front()
- Split L into two lists, $L 1$ and $L 2$, each of size $(n-1) / 2$
- T1 \leftarrow BottomUpHeap(L1)
- T2 \leftarrow BottomUpHeap(L2)
- Create binary tree T with root r storing e, left subtree $T 1$, and right subtree T2
- Perform a down-heap bubbling from the root r of T, if necessary
- return T

How to find top k students who will be allowed to go for 6 month internship?

$$
\text { E.g. } A=[8.1,7.2,7.5,9,9.8,10,5.4], k=3
$$

Output $=[10,9.8,9]$

- Solution 1: Sort the numbers $=>O(n \log n)$
- Solution 2: Select min k times $=>O(n k)$
- Solution 3: Build min-heap $=>O(n+k \log n)$
- Solution 4: Build min-heap of first k elements, for rest:
- if < root then ignore else replace root with the number and heapify
$-\mathrm{O}(\mathrm{k}+(\mathrm{n}-\mathrm{k}) \log \mathrm{k})$
- More?

A company has n items $\left(w_{1} . . w_{n}\right)$ and

 wants to make packages of minimum weight W. Give a fast algorithms to do this in minimum number of steps.- Sort, add first two, sort again, stop when first element in greater than W
- O(xnlog n)
- Create min heap, compare W with the root, if smaller, remove two elements, add them, and insert into the heap, repeat the procedure
$-O(n+x \log n)$

