
Lecture 12
Priority Queue

Slides modified from © 2010 Goodrich, Tamassia

Arrays
Linked Lists

Stacks
Queues

Trees
Algorithm Analysis

OOP

Scheduler

– ready programs are added
to the scheduler

– it decides which program
to execute next

SRTF Scheduling Policy

Schedule

45 62 77 10 25 36 23

Main Operations

insert()

removeMin()

Priority Queue ADT
•  a collection of

entries
•  entry = (key, value)
•  main methods
– insert(k, v)
– removeMin()

•  additional methods
– min()
– size(),
– isEmpty()

Example

Keys
•  specific attribute of the element

•  many times assigned to the element

by user of application

•  key may change for the same

element, e.g. popularity

Total Order Relations
1. Comparability property:
 either x ≤ y or y ≤ x
2. Antisymmetric property:
 x ≤ y and y ≤ x ⇒ x = y

3. Transitive property:
 x ≤ y and y ≤ z ⇒ x ≤ z

• keys with total order
– weight
• keys not having total
order
– 2D point

Comparator ADT
•  implements isLess(p,q)

•  can derive other relations
from this:

– (p == q)?

•  for STL, in C++ overload
“()”

Comparator Examples
class LeftRight {
public:

 bool operator()(Point2D& p, Point2D& q)
 { return p.getX() < q.getX(); }

};

class BottomTop {
public:

 bool operator()(Point2D& p, Point2D& q)
 { return p.getY() < q.getY(); }

};

Sort Sequence L with
Priority Queue P
while !L.empty ()

 e ← L.front();
 L.eraseFront()
 P.insert (e)

while !P.empty()
 e ← P.removeMin()
 L.insertBack(e)

What is the time
complexity of this

sorting?

Implementation with
sorted sequence

• insert()?
• removeMin()?

1 2 3 4 5

Insertion-Sort
1.  insert at right place to

keep the list sorted
2.  remove head repeatedly

Insertion-Sort Example
 Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
 (a) (4,8,2,5,3,9) (7)

 (b) (8,2,5,3,9) (4,7)
 (c) (2,5,3,9) (4,7,8)
 (d) (5,3,9) (2,4,7,8)
 (e) (3,9) (2,4,5,7,8)
 (f) (9) (2,3,4,5,7,8)
 (g) () (2,3,4,5,7,8,9)

Phase 2

 (a) (2) (3,4,5,7,8,9)
 (b) (2,3) (4,5,7,8,9)

 (g) (2,3,4,5,7,8,9) ()

Time complexity

Best case?

Worst case?

Implementation with
unsorted sequence

• insert()?
• removeMin()?

4 5 2 3 1

Selection-Sort
1.  insert elements in

unsorted list
2.  remove min repeatedly

Selection-Sort Example
 Sequence L Priority Queue P
Input: (7,4,8,2,5,3,9) ()

Phase 1

 (a) (4,8,2,5,3,9) (7)
 (b) (8,2,5,3,9) (7,4)

 (g) () (7,4,8,2,5,3,9)

Phase 2

 (a) (2) (7,4,8,5,3,9)
 (b) (2,3) (7,4,8,5,9)
 (c) (2,3,4) (7,8,5,9)
 (d) (2,3,4,5) (7,8,9)
 (e) (2,3,4,5,7) (8,9)
 (f) (2,3,4,5,7,8) (9)
 (g) (2,3,4,5,7,8,9) ()

What is time complexity

of selection sort?

Worst case?

Best case?

Give two advantages of
selection sort over others?

Summary: either
insert is O(n) or

removeMin() is O(n)!

Can we do better?

Lets Try BST

1 3

2

4

5 7

6

Time complexity
removeMin()?

insert()?

Is O(h) good
enough?

Look at this tree…

1

3
4

5

2

7
6

BST?
O(h)?

BST Order Restrictions

1.  left subtree ≤ node
2.  right subtree ≥ node

A simpler order
restriction…

1. parent ≤ child

Remake this tree with new
order restriction…

1

3
4

5

2

7
6

Heap
1. Order restriction:

K(parent) ≤ K(child)
2.  Structural restriction:

complete binary

Height of Heap
h ≤ log n, so, h is O(log n)

1
2

2h-1

1

keys
0
1
h-1
h

depth

Heaps and Priority Queues
•  Heap can be used to implement a priority

queue
•  store a (key, element) item at each internal

node
•  keep track of the last node
 (2, Chomu)

(6, Sohan) (5, Ram)

(9, Shyam) (7, Anna)

The last node of a heap is
the rightmost node of

maximum depth!
 2

6 5
7 9

last node

insert()
1. find insertion node
2. add new element (k)

at this node
3. restore heap order

Finding the Insertion Node
•  go up until node becomes a left child or the root

is reached
•  if root is reached, go left until leaf node is reached
•  if node becomes left child, go to the right sibling

and go down left until a leaf is reached

time complexity of
finding the insertion

node

Insertion into a Heap

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

(2, T)

up-heap bubbling

(2,T)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(4,C)

up-heap bubbling

(20,B)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(2,T)

(4,C)

up-heap bubbling

(2,T)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(4,C)

up-heap bubbling

(2,T)
(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(4,C)

up-heap bubbling

(6,Z)

(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)

up-heap bubbling

(4,C)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(2,T)

(5,A)

up-heap bubbling

(6,Z)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)(5,A)

Another View of
Insertion

(6,Z)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)(5,A)

(2,T)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(4,C)

Correctness of Upheap

(2,T)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(4,C)

Always replaced with
smaller key!

(6,Z)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)(5,A)

(2,T)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(4,C)

Since a heap has height
O(log n), up-heap runs in

O(log n) time

removeMin()

Removal from a Heap

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

(4, C)

Removal from a Heap

(13,W)

(6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(4,C)

(5,A)

down-heap bubbling
(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)(5,A)

down-heap bubbling
(13,W)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A) (6,Z)

down-heap bubbling

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)

(5,A)

down-heap bubbling

(9,F)

(20,B)(7,Q)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A)

(13,W)

(6,Z)

down-heap bubbling

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (7,Q) (20,B)

(6,Z)

(5,A)

(9,F)

down-heap bubbling

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(11,S)(14,E)(25,J)(16,X)

(12,H)

(6,Z)

down-heap bubbling

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(12,H)

(11,S)(14,E)(25,J)(16,X)

(6,Z)

Correctness of Downheap

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)(5,A)

Since a heap has height
O(log n), down-heap runs

in O(log n) time

Keeping track of last
node after

removeMin()

Similar to finding
node for insertion

X	

Vector
Implementation of
Complete Binary

Tree

25 12 11 8 23 20

17715

6

16

5

14

4

9

•  start at rank 1
•  for the node at rank i
– the left child is at rank 2i
– the right child is at rank 2i + 1

2

6 5

7 9

2 5 6 9 7

1 2 3 4 5 0

insert() and
removeMin() on

vector heap!

How to build a heap?

1. insert repeatedly
O(n log n)

(16, 15, 4 12, 6, 7, 23, 20, 25, 9, 11, 17,
5, 8, 14)

Build a heap with the
below keys!

2. Bottom-up Heap
Construction

2i -1 2i -1

2i+1-1

Building a Heap – Bottomup

415 12 6 7 23 2016

Building a Heap – Bottomup

416 15

9

12 6 7

11

23

17

20

25

Building a Heap – Bottomup

2016 25 9

4

12 11 7

6

23

1715

Building a Heap – Bottomup

25 12 11 23 20

1715

16

8

4

9

5

6

7

Building a Heap – Bottomup

25 12 11 23 20

1715

16 8

5

9

4 6

7

Building a Heap – Bottomup

25 12 11 8 23 20

17715

6

16

5

14

4

9

Building a Heap – Bottomup

25 12 11 8 23 20

17715

6

16 14

4

5

9

in phase i, pairs of heaps
with 2i -1 keys are merged
into heaps with 2i+1-1 keys

Analysis 1
-first right, then left until leaf

Analysis 2
-sum of heights of all nodes

Lecture Notes CMSC 251

 0 0 0 0 0 0

2*2

 0 0*8

1*4

3*1

Total work for BuildHeap

 2

 0

 1 1 1 1

 2

 3

Figure 13: Analysis of BuildHeap.

from the bottom there are 2h−j nodes, and each might sift down j levels. So, if we count from bottom
to top, level-by-level, we see that the total time is proportional to

T (n) =
h
∑

j=0

j2h−j =
h
∑

j=0

j
2h

2j
.

If we factor out the 2h term, we have

T (n) = 2h
h
∑

j=0

j

2j
.

This is a sum that we have never seen before. We could try to approximate it by an integral, which
would involve integration by parts, but it turns out that there is a very cute solution to this particular
sum. We’ll digress for a moment to work it out. First, write down the infinite general geometric series,
for any constant x < 1.

∞
∑

j=0

xj =
1

1− x
.

Then take the derivative of both sides with respect to x, and multiply by x giving:
∞
∑

j=0

jxj−1 =
1

(1− x)2

∞
∑

j=0

jxj =
x

(1− x)2
,

and if we plug x = 1/2, then voila! we have the desired formula:
∞
∑

j=0

j

2j
=

1/2
(1− (1/2))2

=
1/2
1/4

= 2.

In our case we have a bounded sum, but since the infinite series is bounded, we can use it instead as an
easy approximation.
Using this we have

T (n) = 2h
h
∑

j=0

j

2j
≤ 2h

∞
∑

j=0

j

2j
≤ 2h · 2 = 2h+1.

Now recall that n = 2h+1 − 1, so we have T (n) ≤ n + 1 ∈ O(n). Clearly the algorithm takes at least
Ω(n) time (since it must access every element of the array at least once) so the total running time for
BuildHeap is Θ(n).

45

j2h− j
j=0

h

∑
Lecture Notes CMSC 251

 0 0 0 0 0 0

2*2

 0 0*8

1*4

3*1

Total work for BuildHeap

 2

 0

 1 1 1 1

 2

 3

Figure 13: Analysis of BuildHeap.

from the bottom there are 2h−j nodes, and each might sift down j levels. So, if we count from bottom
to top, level-by-level, we see that the total time is proportional to

T (n) =
h
∑

j=0

j2h−j =
h
∑

j=0

j
2h

2j
.

If we factor out the 2h term, we have

T (n) = 2h
h
∑

j=0

j

2j
.

This is a sum that we have never seen before. We could try to approximate it by an integral, which
would involve integration by parts, but it turns out that there is a very cute solution to this particular
sum. We’ll digress for a moment to work it out. First, write down the infinite general geometric series,
for any constant x < 1.

∞
∑

j=0

xj =
1

1− x
.

Then take the derivative of both sides with respect to x, and multiply by x giving:
∞
∑

j=0

jxj−1 =
1

(1− x)2

∞
∑

j=0

jxj =
x

(1− x)2
,

and if we plug x = 1/2, then voila! we have the desired formula:
∞
∑

j=0

j

2j
=

1/2
(1− (1/2))2

=
1/2
1/4

= 2.

In our case we have a bounded sum, but since the infinite series is bounded, we can use it instead as an
easy approximation.
Using this we have

T (n) = 2h
h
∑

j=0

j

2j
≤ 2h

∞
∑

j=0

j

2j
≤ 2h · 2 = 2h+1.

Now recall that n = 2h+1 − 1, so we have T (n) ≤ n + 1 ∈ O(n). Clearly the algorithm takes at least
Ω(n) time (since it must access every element of the array at least once) so the total running time for
BuildHeap is Θ(n).

45

sum of heights

O(n)

How to merge two
heaps?

h1 h2

h1

h2

Time Complexity??

Merge two heaps in
O(n)

Min Heap

4 5

2

1

6 7

3

Max Heap

4 3

6

7

2 1

5

Recall Priority Queue ADT
•  a collection of

entries
•  entry = (key, value)
•  main methods
– insert(k, v)
– removeMin()

•  additional methods
– min()
– size(),
– isEmpty()

Heap-Sort
while !L.empty ()

 e ← L.front();
 L.eraseFront()
 P.insert (e)

while !P.empty()
 e ← P.removeMin()
 L.insertBack(e)

Check if a given
Binary Tree is Heap

Converting min-heap
into max-heap

Implementing Heap-
Sort In-Place

•  Use left side array for heap and right side
array for list

•  move from left to right, and then right to
left

| 4 7 2 1 3 6 5
4 | 7 2 1 3 6 5
4 7 | 2 1 3 6 5
7 4 | 2 1 3 6 5

7 4 6 1 3 2 5|

What should be the next step?

What is the time complexity?

n log n + n log n	

Can we make it faster?

n + n log n	

Bottom-up Heap Construction for a
Linked List implementation

-  BottomUpHeap(L):
-  if L.empty() then return an empty heap
-  e ← L.front()
-  L.pop front()
-  Split L into two lists, L1 and L2, each of size (n − 1)/2
-  T1 ← BottomUpHeap(L1)
-  T2 ← BottomUpHeap(L2)
-  Create binary tree T with root r storing e, left subtree T1, and

right subtree T2
-  Perform a down-heap bubbling from the root r of T , if

necessary
-  return T

How to find top k students who will be
allowed to go for 6 month internship?

 E.g. A = [8.1, 7.2, 7.5, 9, 9.8, 10, 5.4], k = 3

Output = [10, 9.8, 9]

•  Solution 1: Sort the numbers => O(n log n)
•  Solution 2: Select min k times => O(nk)
•  Solution 3: Build min-heap=> O(n+k log n)
•  Solution 4: Build min-heap of first k elements, for

rest:
–  if < root then ignore else replace root with the number

and heapify
–  O(k + (n-k) log k)

•  More?

A company has n items (w1..wn) and
wants to make packages of minimum

weight W. Give a fast algorithms to do
this in minimum number of steps.

•  Sort, add first two, sort again, stop when first
element in greater than W
–  O(xnlog n)

•  Create min heap, compare W with the root, if
smaller, remove two elements, add them, and
insert into the heap, repeat the procedure
–  O(n+x log n)

