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Scheduler 

– ready programs are added 
to the scheduler 

– it decides which program 
to execute next 



SRTF Scheduling Policy 

Schedule 

45     62     77    10    25     36     23 



Main Operations 

insert() 

removeMin() 



Priority Queue ADT 
•  a collection of 

entries 
•  entry = (key, value) 
•  main methods  
– insert(k, v) 
– removeMin() 

 

•  additional methods 
– min() 
– size(), 
– isEmpty() 



Example 



Keys 
•  specific attribute of the element 

•  many times assigned to the element 

by user of application 

•  key may change for the same 

element, e.g. popularity 



Total Order Relations 
1. Comparability property:  
  either x ≤ y or y ≤ x 
2. Antisymmetric property: 
 x ≤ y and y ≤ x ⇒ x = y 

3. Transitive property: 
  x ≤ y and y ≤ z ⇒ x ≤ z 



• keys with total order 
– weight 
• keys not having total 
order 
– 2D point 



Comparator ADT 
•  implements isLess(p,q) 

•  can derive other relations 
from this:  

– (p == q)?  

•  for STL, in C++ overload 
“()” 



Comparator Examples 
class LeftRight {  
public: 

 bool operator()(Point2D& p, Point2D& q) 
 { return p.getX() < q.getX(); } 

}; 

class BottomTop {  
public: 

 bool operator()( Point2D& p, Point2D& q) 
 { return p.getY() < q.getY(); } 

}; 



Sort Sequence L with 
Priority Queue P  
while !L.empty () 

 e ← L.front();  
 L.eraseFront() 
 P.insert (e) 

while !P.empty() 
 e ← P.removeMin() 
 L.insertBack(e) 



What is the time 
complexity of this 

sorting? 



Implementation with 
sorted sequence 

• insert()? 
• removeMin()? 

1 2 3 4 5 



Insertion-Sort 
1.  insert at right place to 

keep the list sorted 
2.  remove head repeatedly 



Insertion-Sort Example 
   Sequence S   Priority queue P  

Input:   (7,4,8,2,5,3,9)   ()   
 
Phase 1  
     (a)   (4,8,2,5,3,9)   (7)   

 (b)   (8,2,5,3,9)   (4,7)   
 (c)   (2,5,3,9)    (4,7,8)   
 (d)   (5,3,9)    (2,4,7,8)   
 (e)   (3,9)    (2,4,5,7,8)   
 (f)   (9)    (2,3,4,5,7,8)   
 (g)   ()    (2,3,4,5,7,8,9)   

 
Phase 2  

 (a)   (2)    (3,4,5,7,8,9)   
 (b)   (2,3)    (4,5,7,8,9)   
 ..   ..    ..   
 (g)   (2,3,4,5,7,8,9)   () 



Time complexity 

Best case? 

Worst case? 



Implementation with 
unsorted sequence 

• insert()? 
• removeMin()? 

4 5 2 3 1 



Selection-Sort 
1.  insert elements in 

unsorted list  
2.  remove min repeatedly 



Selection-Sort Example 
                        Sequence L   Priority Queue P   
Input:   (7,4,8,2,5,3,9)   ()   
 
Phase 1  

 (a)   (4,8,2,5,3,9)   (7)   
 (b)   (8,2,5,3,9)   (7,4)   
 ..   ..  ..   
 (g)   ()    (7,4,8,2,5,3,9)   

 
Phase 2  

 (a)   (2)    (7,4,8,5,3,9)   
 (b)   (2,3)    (7,4,8,5,9)   
 (c)   (2,3,4)    (7,8,5,9)  
 (d)   (2,3,4,5)   (7,8,9)   
 (e)   (2,3,4,5,7)   (8,9)   
 (f)   (2,3,4,5,7,8)   (9)   
 (g)   (2,3,4,5,7,8,9)   () 



What is time complexity 

of selection sort? 

Worst case? 

Best case? 



Give two advantages of 
selection sort over others? 



Summary: either 
insert is O(n) or 

removeMin() is O(n)! 



Can we do better? 



Lets Try BST 

1 3 

2 

4 

5 7 

6 



Time complexity 
removeMin()? 

insert()? 



Is O(h) good 
enough? 



Look at this tree… 

1 

3 
4 

5 

2 

7 
6 

BST? 
O(h)? 



BST Order Restrictions 

1.  left subtree ≤ node 
2.  right subtree ≥ node 



A simpler order 
restriction… 

1. parent ≤ child 



Remake this tree with new 
order restriction… 

1 

3 
4 

5 

2 

7 
6 



Heap 
1. Order restriction: 

K(parent) ≤ K(child) 
2.  Structural restriction: 

complete binary 



Height of Heap 
h ≤ log n, so, h is O(log n) 

1 
2 

2h-1 

1 

keys 
0 
1 
h-1 
h 

depth 



Heaps and Priority Queues 
•  Heap can be used to implement a priority 

queue 
•  store a (key, element) item at each internal 

node 
•  keep track of the last node 
 (2, Chomu) 

(6, Sohan) (5, Ram) 

(9, Shyam) (7, Anna) 



The last node of a heap is 
the rightmost node of 

maximum depth! 
 2 

6 5 
7 9 

last node 



insert() 
1. find insertion node 
2. add new element (k) 

at this node 
3. restore heap order 



Finding the Insertion  Node 
•  go up until node becomes a left child or the root 

is reached 
•  if root is reached, go left until leaf node is reached 
•  if node becomes left child, go to the right sibling 

and go down left until a leaf is reached 



time complexity of 
finding the insertion 

node 



Insertion into a Heap 

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

(2, T) 



up-heap bubbling 

(2,T)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(4,C)



up-heap bubbling 

(20,B)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(2,T)

(4,C)



up-heap bubbling 

(2,T)

(5,A) (6,Z)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(4,C)



up-heap bubbling 

(2,T)
(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(4,C)



up-heap bubbling 

(6,Z)

(5,A)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)



up-heap bubbling 

(4,C)

(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(6,Z)

(2,T)

(5,A)



up-heap bubbling 

(6,Z)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)(5,A)



Another View of 
Insertion 

(6,Z)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)(5,A)

(2,T)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(4,C)



Correctness of Upheap 

(2,T)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(4,C)



Always replaced with 
smaller key! 

(6,Z)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E) (20,B)

(2,T)

(4,C)(5,A)

(2,T)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)(14,E)

(4,C)



Since a heap has height 
O(log n), up-heap runs in 

O(log n) time 



removeMin() 



Removal from a Heap 

(14,E)

(5,A) (6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (13,W)(12,H)

(4,C)

(4, C) 



Removal from a Heap 

(13,W)

(6,Z)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(4,C)

(5,A)



down-heap bubbling 
(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)(5,A)



down-heap bubbling 
(13,W)

(20,B)(7,Q)(9,F)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A) (6,Z)



down-heap bubbling 

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)

(5,A)



down-heap bubbling 

(9,F)

(20,B)(7,Q)(15,K)

(11,S)(16,X) (25,J) (12,H)(14,E)

(5,A)

(13,W)

(6,Z)



down-heap bubbling 

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (7,Q) (20,B)

(6,Z)

(5,A)

(9,F)



down-heap bubbling 

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(11,S)(14,E)(25,J)(16,X)

(12,H)

(6,Z)



down-heap bubbling 

(13,W)

(20,B)(7,Q)(15,K)

(5,A)

(9,F)

(12,H)

(11,S)(14,E)(25,J)(16,X)

(6,Z)



Correctness of Downheap 

(13,W)

(14,E) (12,H)(25,J)(16,X) (11,S)

(15,K) (9,F) (7,Q) (20,B)

(6,Z)(5,A)



Since a heap has height 
O(log n), down-heap runs 

in O(log n) time 



Keeping track of last 
node after 

removeMin() 



Similar to finding 
node for insertion 

X	



Vector 
Implementation of 
Complete Binary 

Tree 



25 12 11 8 23 20

17715

6

16

5

14

4

9



•  start at rank 1 
•  for the node at rank i 
– the left child is at rank 2i 
– the right child is at rank 2i + 1 

2 

6 5 

7 9 

2 5 6 9 7 

1 2 3 4 5 0 



insert() and 
removeMin() on 

vector heap! 



How to build a heap? 



1. insert repeatedly 
O(n log n) 



(16, 15, 4 12, 6, 7, 23, 20, 25, 9, 11, 17, 
5, 8, 14) 

Build a heap with the 
below keys! 



2. Bottom-up Heap 
Construction 

2i -1 2i -1 

2i+1-1 



Building a Heap – Bottomup 

415 12 6 7 23 2016



Building a Heap – Bottomup 

416 15

9

12 6 7

11

23

17

20

25



Building a Heap – Bottomup 

2016 25 9

4

12 11 7

6

23

1715



Building a Heap – Bottomup 

25 12 11 23 20

1715

16

8

4

9

5

6

7



Building a Heap – Bottomup 

25 12 11 23 20

1715

16 8

5

9

4 6

7



Building a Heap – Bottomup 

25 12 11 8 23 20

17715

6

16

5

14

4

9



Building a Heap – Bottomup 

25 12 11 8 23 20

17715

6

16 14

4

5

9



in phase i, pairs of heaps 
with 2i -1 keys are merged 
into heaps with 2i+1-1 keys 



Analysis 1 
-first right, then left until leaf 



Analysis 2 
-sum of heights of all nodes 

Lecture Notes CMSC 251

 0  0  0  0  0  0

2*2

 0 0*8

1*4

3*1

Total work for BuildHeap

 2

 0

 1 1 1 1

 2

 3

Figure 13: Analysis of BuildHeap.

from the bottom there are 2h−j nodes, and each might sift down j levels. So, if we count from bottom
to top, level-by-level, we see that the total time is proportional to

T (n) =
h
∑

j=0

j2h−j =
h
∑

j=0

j
2h

2j
.

If we factor out the 2h term, we have

T (n) = 2h
h
∑

j=0

j

2j
.

This is a sum that we have never seen before. We could try to approximate it by an integral, which
would involve integration by parts, but it turns out that there is a very cute solution to this particular
sum. We’ll digress for a moment to work it out. First, write down the infinite general geometric series,
for any constant x < 1.

∞
∑

j=0

xj =
1

1− x
.

Then take the derivative of both sides with respect to x, and multiply by x giving:
∞
∑

j=0

jxj−1 =
1

(1− x)2

∞
∑

j=0

jxj =
x

(1− x)2
,

and if we plug x = 1/2, then voila! we have the desired formula:
∞
∑

j=0

j

2j
=

1/2
(1− (1/2))2

=
1/2
1/4

= 2.

In our case we have a bounded sum, but since the infinite series is bounded, we can use it instead as an
easy approximation.
Using this we have

T (n) = 2h
h
∑

j=0

j

2j
≤ 2h

∞
∑

j=0

j

2j
≤ 2h · 2 = 2h+1.

Now recall that n = 2h+1 − 1, so we have T (n) ≤ n + 1 ∈ O(n). Clearly the algorithm takes at least
Ω(n) time (since it must access every element of the array at least once) so the total running time for
BuildHeap is Θ(n).

45



j2h− j
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h

∑
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sum of heights 

O(n)  



How to merge two 
heaps? 



h1 h2 



h1 

h2 

Time Complexity?? 



Merge two heaps in 
O(n) 



Min Heap 

4 5 

2 

1 

6 7 

3 



Max Heap 

4 3 

6 

7 

2 1 

5 



Recall Priority Queue ADT 
•  a collection of 

entries 
•  entry = (key, value) 
•  main methods  
– insert(k, v) 
– removeMin() 

 

•  additional methods 
– min() 
– size(), 
– isEmpty() 



Heap-Sort 
while !L.empty () 

 e ← L.front();  
 L.eraseFront() 
 P.insert (e) 

while !P.empty() 
 e ← P.removeMin() 
 L.insertBack(e) 



Check if a given 
Binary Tree is Heap 



Converting min-heap 
into max-heap 



Implementing Heap-
Sort In-Place  

•  Use left side array for heap and right side 
array for list 

•  move from left to right, and then right to 
left 



| 4 7 2 1 3 6 5 
4 | 7 2 1 3 6 5 
4 7 | 2 1 3 6 5 
7 4 | 2 1 3 6 5 

7 4 6 1 3 2 5| 

What should be the next step? 



What is the time complexity? 

n log n + n log n	

Can we make it faster? 

n + n log n	



Bottom-up Heap Construction for a 
Linked List implementation 

-  BottomUpHeap(L): 
-  if L.empty() then return an empty heap  
-  e ← L.front() 
-  L.pop front() 
-  Split L into two lists, L1 and L2, each of size (n − 1)/2 
-  T1 ← BottomUpHeap(L1) 
-  T2 ← BottomUpHeap(L2) 
-  Create binary tree T with root r storing e, left subtree T1, and 

right subtree T2  
-  Perform a down-heap bubbling from the root r of T , if 

necessary 
-  return T  



How to find top k students who will be 
allowed to go for 6 month internship? 

 E.g. A = [8.1, 7.2, 7.5, 9, 9.8, 10, 5.4], k = 3 

Output = [10, 9.8, 9] 

•  Solution 1: Sort the numbers => O(n log n) 
•  Solution 2: Select min k times => O(nk) 
•  Solution 3: Build min-heap=> O(n+k log n) 
•  Solution 4: Build min-heap of first k elements, for 

rest: 
–  if < root then ignore else replace root with the number 

and heapify  
–  O(k + (n-k) log k) 

•  More? 



A company has n items (w1..wn) and 
wants to make packages of minimum 

weight W. Give a fast algorithms to do 
this in minimum number of steps. 

•  Sort, add first two, sort again, stop when first 
element in greater than W 
–  O(xnlog n) 

•  Create min heap, compare W with the root, if 
smaller, remove two elements, add them, and 
insert into the heap, repeat the procedure 
–  O(n+x log n) 


