Lecture 12
Priority Queue

Slides modified from © 2010 Goodrich, Tamassia

OOP Linked Lists

Arrays
Stacks

Queues

Trees
Algorithm Analysis

Scheduler

—ready programs are added
to the scheduler

—it decides which program
to execute next

SRTF Scheduling Policy

Schedule

a
L L) LT

/7 10 25

Main Operations
insert()

removeMin()

Priority Queue ADT

* a collection of * additional methods
entries —min()

* entry = (key, value) —size(),

* main methods —isEmpty()
—insert(k, v)

—removeMin()

Example

Method Return Value | Priority Queue Contents
insert(5,A) { (5A) }
insert(9,C) { (5A), (9,C) }
insert(3,B) { (3,B), (5,A), (9,C) }

min() 3B) | {(3B) (5A) (9.C) }

removeMin() (3,B) { (5A), (9,C) }
insert(7,D) { (5/A), (7,D), (9,C) }
removeMin() (5,A) { (7,D), (9,C) }
removeMin() (7,D) {(9,C) }
removeMin() (9,0) { }
removeMin() null { }
iIsEmpty() true { }

Keys
» specific attribute of the element

* many times assigned to the element

by user of application

 key may change for the same

element, e.g. popularity

Total Order Relations

1. Comparability property:
either xs yory < x

2. Antisymmetric property:
Xsyandysx=x=y

3. Transitive property:
Xsyandysz=xs2z

* keys with total order
—weight

* keys not having total
order

—2D point

Comparator ADT

» implements isLess(p,q)

* can derive other relations
from this:
~p ==9)?

* for STL, in C++ overload

ll()ll

Comparator Examples

class LeftRight {
publlc

bool operator()(Point2D& p, Point2D& q)
{return p.getX() < g.getX(); }

_class BottomTop {
publlc

bool operator()(Point2D& p, Point2D& q)
{ return p.getY() < g.getY(); }

Sort Sequence L with
Priority Queue P

;whlle IL.empty ()

e < L.front();
L.eraseFront()

P.insert (e)

éwhile IP.empty/() :

e < P.removeMin()é
L.insertBack(e)

What is the time
complexity of this
sorting?

Implementation with
sorted sequence

(23 @ &
*insert()?

e removeMin()?

Insertion-Sort

1.insert at right place to
keep the list sorted

2.remove head repeatedly

Insertion-Sort Example

Input:

Phase 1
(a)
(b)
()
(d)
(e)
(f)
(9)

Phase 2
(a)
(b)

(9)

Sequence S
(7/4/8/2/5/3/9)

(4/8/2/5/3/9)
(8/2/5/3/9)
(2/5/3/9)
(5,3,9)

(3,9)

(9)

()

(2)
(2,3)

(2/3/4/5/7/8/9)

Priority queue P

0

(7)
(4,7)

(4,7,8)
(2/4/7/8)
(2,4,5,7,8)
(2/3/4/5/7/8)
(2/3/4/5/7/8/9)

(3/4/5/7/8/9)
(4/5/7/8/9)

0

Time complexity
Best case?
Worst case?

Implementation with
unsorted sequence

@626 @
*insert()?

e removeMin()?

Selection-Sort

1.insert elements in
unsorted list

2.remove min repeatedly

Selection-Sort Example

Input:

Phase 1

Sequence L
(7,4,8,2,5,3,9)

(4,8,2,5,3,9)
(8,2,5,3,9)

6

)

3)
2,3,4)

(2

(2,

(
(2,3,4,5)
(2,3,4,5,7)
(2,3,4,5,7,8)
(2,3,4,5,7,8,9)

Priority Queue P

(7,4,8,2,5,3,9)

(7,4,8,5,3,9)
(7,4,8,5,9)
(7,8,5,9)
(7,8,9)
(8,9)
(9)
()

What is time complexity
of selection sort?
Worst case?

Best case?

Give two advantages of
selection sort over others?

Summary: either
insert is O(n) or
removeMin() is O(n)!

Can we do better?

Lets Try BST
(4

Time complexity
removeMin()?
insert()?

Is O(h) good
enough?

L ook at this tree...

BST Order Restrictions

1. left subtree < node
2. right subtree = node

A simpler order
restriction...

1.parent < chila

Remake this tree with new
order restriction...

Heap

1. Order restriction:
K(parent) < K(child)

2. Structural restriction:
complete binary

Height of Heap
h <logn, so, his O(log n)

depth keys

Heaps and Priority Queues

* Heap can be used to implement a priority
queue

* store a (key, element) item at each internal
node

» keep track of the last node
[(2, Chomu)]
[(6, Sohan)]

:(5,‘ Ram)]

(9,

The last node of a heap is
the rightmost node of
maximum depth!

last node

insert()

1.find insertion node

2.add new element (k)
at this node

3.restore heap order

Finding the Insertion Node

go up until node becomes a left child or the root
is reached

if root is reached, go left until leaf node is reached

if node becomes left child, go to the right sibling
and go down left until a leaf is reached

time complexity of
finding the insertion
node

Insertion into a Heap

.
(B (623
5K < < (@oBD
Qoxp @) Q4D @2H) [s) @W

(2, T)

up-heap bubbling
<.

(G2 (623
UKD < < Q08D
Qoxp (@51 @B @1 @s) @w) @D

up-heap bubbling
<

(A C62))
@ COF) @ D
02T)
Qoxp (@) (4ED @21 @1s) @wD C O

up-heap bubbling
<

(G (623
UKD < <@ <D
Qexp (@) @4ED @2H) @) @w) @oBD

up-heap bubbling
<

up-heap bubbling
<

(G D,
UKD < < <@
Qexp @) @4ED @2H) L) @3w) @oBD

bubbling
ap
up-he

up-heap bubbling

(G2 <,
UK < < @
Qoxp (@51 @ED @1 @s) W) @oBD

Another View of
Insertion

Correctness of Upheap

Always replaced with
smaller key!

Since a heap has height
O(log n), up-heap runs in
O(log n) time

removeMin()

Removal from a Heap

(B (623
5K < < (@oBD
Qoxp @) Q4D @2H) [s) @W

14,0

Removal from a Heap

down-heap bubbling

down-heap bubbling

down-heap bubbling

down-heap bubbling

down-heap bubbling

down-heap bubbling

Correctness of Downheap

Since a heap has height
O(log n), down-heap runs
in O(log n) time

Keeping track of last
node after
removeMin()

Similar to finding
node for insertion

Vector
Implementation of
Complete Binary
Tree

e start at rank 1

e for the node at rank i

—the left child is at rank 2i
—the right child is at rank 2i + 1

insert() and
remnoveMin() on
vector heap!

How to build a heap?

1. insert repeatedly
O(n log n)

Build a heap with the
below keys!

(16, 15,412, 6,7, 23, 20, 25,9, 11, 17,
5,8, 14)

2. Bottom-up Heap
Construction

Building a Heap — Bottomup

p—

\

N\ N\
[[
\ \
/!~ /!~

0@@@@@@0

Building a Heap — Bottomup

[/
~ K
~ - ~
~ ~
”~ ~N
— ”~ ~ —

(\~ v \

]]
NN
N

Q\x‘

N\ /7

AP

Build
uilding a Heap — Bottom
~ up

{
//\,’\
~
— -)
{ v~)
~
! e

\/ \
> -

Kb db &

Building a Heap — Bottomup

/\-

[
e

Building a Heap — Bottomup

/\-

[
A

Building a Heap — Bottomup

Building a Heap — Bottomup

in phase i, pairs of heaps
with 2' -1 keys are merged
into heaps with 2'*1-1 keys

Analysis 1
-first right, then left until leaf

—_——
—_——
—_——
_——
—_—
-
-~

Analysis 2
-sum of heights of all nodes

Q - 3%]

(2, (2, — 272

O ORNO RO
(0 (0 (© (@ (© (© (@) (0)—= o0

sum of heights

O(n)

How to merge two
heaps?

gi‘ .
N

Time Complexity??

Merge two heaps in
O(n)

Min Heap

Max Heap

Recall Priority Queue ADT

* a collection of * additional methods
entries —min()

* entry = (key, value) —size(),

* main methods —isEmpty()
—insert(k, v)

—removeMin()

Heap-Sort

‘while |L.empty ()

e — L.front();
L.eraseFront()

P.insert (e)

éwhile IP.empty/()

e < P.removeMin()é
L.insertBack(e)

Check if a given
Binary Tree is Heap

Converting min-heap
into max-heap

Implementing Heap-
Sort In-Place

» Use left side array for heap and right side
array for list

» move from left to right, and then right to
left

14721365

41721365
47121365
74121365

7461325

What should be the next step?

What is the time complexity?

nlogn + nlogn

Can we make it faster?

n+nlogn

Bottom-up Heap Construction for a
Linked List implementation

— BottomUpHeap(L):

— if Lempty() then return an empty heap

- e« L.front()

- L.pop front()

- Split L into two lists, L1 and L2, each of size (n — 1)/2
-~ T1 < BottomUpHeap(L1)

- T2 < BottomUpHeap(L2)

- Create binary tree T with root r storing e, left subtree T1, and
~ right subtree T2 _

- Perform a down-heap bubbling from the root rof T, if
~ necessary

- return T

How to find top k students who will be
allowed to go for 6 month internship?

E.g.A=[8.1,7.2,75,9,9.8,10,54], k=3
Output = [10, 9.8, 9]

Solution 1: Sort the numbers => O(n log n)
Solution 2: Select min k times => O(nk)

Solution 3: Build min-heap=> O(n+k log n)
Solution 4: Build min-heap of first k elements, for
rest:

— if < root then ignore else replace root with the number
and heapify

— O(k + (n-k) log k)
 More?

A company has n items (w, w,) and
wants to make packages of minimum
weight W. Give a fast algorithms to do
this in minimum number of steps.

» Sort, add first two, sort again, stop when first
element in greater than W

— O(xnlog n)
* Create min heap, compare W with the root, if

smaller, remove two elements, add them, and
insert into the heap, repeat the procedure

— O(n+x log n)

