Lecture 14 Dictionaries Ordered Maps

What is the difference between a map and a dictionary?

Map Interface search(k) • insert(k,v) delete(k) delete(p)

Additional Dictionary Operation findAll(k)

Implement Dictionary Operations

insert(k,v)

findAll()

What will be the order of returned elements? Time Complexity?

delete(k)

How do you delete specific element?

A MAP can be easily extended to a Dictionary!

MAP does not need the keys to have total order!

In many cases, keys do have total order!

Order related functions 1. min/max 2. predecessor 3. successor

More Ordered Functions

- ceilingEntry(k)floorEntry(k)
- lowerEntry(k)
- higherEntry(k)

Complexity with Hash Table? 1. min/max 2. predecessor 3. successor

Additional limitations of Hash Table: -large array -worst case -hash cost

Keep the elements in some order! Ordered Maps

Idea: keep keys in a sorted array!

Binary Search O(log n)

Time complexity insert – O(n) remove – O(n) search – O(log n)

How do we improve insert/remove time?

Trees

Binary Search Tree

-left subtree smaller than node -right subtree larger than node

Operations 1. search $2 \min/\max$ 3. predecessor/successor 4. insert 5. delete

search Tree-Search(x, k) while $x \neq NIL$ and $k \neq x.key$ if k < x.key x = x.leftelse x = x.rightreturn x

min/max

Tree-Min(x) while x.left \neq NIL x = x.left return x Tree-Max(x) while x.right ≠ NIL x = x.right return x

successor

Tree-Successor(x) if x.right \neq NILL return Tree-Min(x.right) y=x.p while $y \neq NIL$ and x == y.rightx=y y=x.p return y

predecessor?

In-order traversal, successor, and predecessor!

In-order can be though of as a projection on a horizontal line!

insert

find place where z belongs insert z there

insert

Tree-Insert(T,z) y = NILx = T.rootwhile $x \neq NIL$ y=x if z.key < x.key x = x.leftelse x = x.rightz.p = yif z.key < y.key</pre> y.left = z else y.right = z

delete(x)

x has no children
 x has one children
 x has two children

Deletion case 1 If x has no children, just remove x

Deletion case 3 If x has two children, then to delete

- 1. find its successor (or predecessor) y
- 2. remove y
- 3. replace x with y

Given a set of n numbers, how much time does it take to create a BST of n numbers!

Create a BST of n sorted numbers! Time complexity?

Given two sorted arrays (distinct numbers) of size n each, find pairs whose some is equal to N.

$$A1 = (1, 2, 3)$$

 $A2 = (4, 5, 6)$
 $N = 6$
Output: (1,5) (2,4)

Suppose a tree represents road network, where edge is the road and nodes are the cities, find shortest distance between two

Bottom-up Solution

- 1. Search for $n_1 \log n$
- 2. Search for $n_2 \log n$
- 3. Compare node n_1 with node n_2 , if they are the same, done
- 4. Include nodes alternatively from L_1 and L_2 until a match is found

Bottom-up Solution

- 1. Search for $n_1 \log n$, store nodes in a list L1
- 2. Search for $n_2 \log n$, store nodes in a list L2
- 3. Start from deepest node in L1,
- 4. Compare with all nodes in L2
 - 1. If matched, LCA is found so abort
- 5. Else go up in L2 and repeat 3

Top-down Approach

- Search for n₁ log n, store nodes in a list
- Search for n₂ log n, store nodes in a list
 L2
- Start Matching corresponding elements in L1 and L2, the first mismatch is LCA

Top-down Solution

- Start from root and keep going down until

 The node n is equal to n₁ or n₂, that node is
 LCA
 - The node n is greater than n_1 and less than n_2
 - If n₁ and n₂ are less than n, go left, otherwise go right