
Lecture 14
Dictionaries

Ordered Maps

What is the difference
between a map and a

dictionary?

Map Interface
• search(k)
•  insert(k,v)
• delete(k)
• delete(p)

Additional Dictionary
Operation

 findAll(k)

Implement Dictionary
Operations

insert(k,v)

findAll()
What will be the order of

returned elements?
Time Complexity?

delete(k)
How do you delete specific

element?

A MAP can be easily
extended to a

Dictionary!

MAP does not need
the keys to have total

order!

In many cases, keys
do have total order!

Order related functions
1. min/max

2. predecessor
3. successor

More Ordered Functions
• ceilingEntry(k)
• floorEntry(k)
•  lowerEntry(k)
• higherEntry(k)

Complexity with Hash Table?
1. min/max

2. predecessor
3. successor

Additional limitations
of Hash Table:

-large array
-worst case
-hash cost

Keep the elements
in some order!

Ordered Maps

Idea: keep keys in a
sorted array!

Binary Search
O(log n)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

m l h

m l h

m l h

l=m =h

-find(7)

Time complexity
insert – O(n)

remove – O(n)
search – O(log n)

How do we improve
insert/remove time?

Trees

Binary Search Tree

-left subtree smaller than node

-right subtree larger than node

Example
58

90 31

42 25 62

12 28 36 59 91

95

75

Operations
1. search

2. min/max
3. predecessor/successor

4. insert
5. delete

search
Tree-Search(x, k)

 while x ≠ NIL and k ≠ x.key
 if k < x.key
 x = x.left
 else
 x = x.right
 return x

min/max
58

90 31

42 25 62

12 28 36 59 91

95

75

min/max
Tree-Min(x)

 while x.left ≠ NIL
 x = x.left
 return x

Tree-Max(x)
 while x.right ≠ NIL
 x = x.right
 return x

successor
Tree-Successor(x)

 if x.right ≠ NILL
 return Tree-Min(x.right)
 y=x.p
 while y ≠ NIL and x == y.right
 x=y
 y=x.p
 return y

predecessor?

In-order traversal,
successor, and
predecessor!

In-order can be though of
as a projection on a

horizontal line!

insert
1. find place where z

belongs
2. insert z there

insert
Tree-Insert(T,z)

 y = NIL
 x = T.root
 while x ≠ NIL
 y=x
 if z.key < x.key
 x = x.left
 else
 x = x.right
 z.p = y
 if z.key < y.key
 y.left = z
 else
 y.right = z

delete(x)

1.  x has no children
2.  x has one children
3.  x has two children

Deletion case 1
q If x has no children, just

remove x
31

42 25

X

31

42 25

Deletion case 2
q If x has exactly one child, just

remove x and make x.p point
to that child

31

42 X

28

31

42 28

Deletion case 3
q If x has two children, then to

delete
1.  find its successor (or

predecessor) y
2.  remove y
3.  replace x with y

Given a set of n numbers,
how much time does it

take to create a BST of n
numbers!

Create a BST of n sorted
numbers!

Time complexity?

Given two sorted arrays (distinct
numbers) of size n each, find

pairs whose some is equal to N.

A1 = (1, 2, 3)
A2 = (4, 5, 6)
N = 6
Output: (1,5) (2,4)

Suppose a tree represents road network,
where edge is the road and nodes are the
cities, find shortest distance between two

cities!
58

90 31

42 25 62

12 28 36 59 91

95

75

Given n1 and n2, find lowest
common ancestor of n1 and n2

in a BST

58

90 31

42 25 62

12 28 36 59 91

95

75

Bottom-up Solution
1.  Search for n1 – log n
2.  Search for n2 – log n
3.  Compare node n1 with node n2, if they

are the same, done
4.  Include nodes alternatively from L1 and L2

until a match is found

Bottom-up Solution
1.  Search for n1 – log n, store nodes in a list L1

2.  Search for n2 – log n, store nodes in a list L2
3.  Start from deepest node in L1,
4.  Compare with all nodes in L2

1.  If matched, LCA is found so abort

5.  Else go up in L2 and repeat 3

Top-down Approach
1.  Search for n1 – log n, store nodes in a list

L1

2.  Search for n2 – log n, store nodes in a list
L2

•  Start Matching corresponding elements in
L1 and L2, the first mismatch is LCA

Top-down Solution
•  Start from root and keep going down until
– The node n is equal to n1 or n2, that node is

LCA
– The node n is greater than n1 and less than n2

–  If n1 and n2 are less than n, go left, otherwise
go right

