Lecture 14 Dictionaries
 Ordered Maps

What is the difference between a map and a dictionary?

Map Interface

- search(k)
- insert(k, v)
- delete(k)
- delete(p)

Additional Dictionary Operation findAll(k)

Implement Dictionary Operations

insert(k,v)

findAll()

What will be the order of returned elements? Time Complexity?

delete(k)

How do you delete specific element?

A MAP can be easily extended to a Dictionary!

MAP does not need the keys to have total order!

In many cases, keys do have total order!

Order related functions 1. $\min /$ max

2. predecessor 3. successor

More Ordered Functions

- ceilingEntry(k)
- floorEntry(k)
- lowerEntry(k)
- higherEntry(k)

1. $\mathrm{min} / \mathrm{max}$
2. predecessor
3. successor

Additional limitations
of Hash Table:
-large array
-worst case
-hash cost

Keep the elements in some order!

Ordered Maps

Idea: keep keys in a sorted array!

Binary Search O(log n)

-find(7)

Time complexity insert - $O(n)$ remove - $O(n)$ search - $O(\log n)$

How do we improve insert/remove time?

Trees

Binary Search Tree

 -left subtree smaller than node -right subtree larger than node
Example

Operations 1. search

 2. $\min /$ max3. predecessor/successor 4. insert 5. delete

search

Tree-Search(x, k) while $x \neq$ NIL and $k \neq x$.key if $k<x$.key

$$
x=x . l e f t
$$

else

$$
x=\text { x.right }
$$

return x
$\min /$ max

min/max

Tree-Min(x) while x.left \neq NIL

$$
x=x . l e f t
$$

return x

Tree-Max(x)
while x.right $=$ NIL
$x=x$.right
return x

successor

Tree-Successor(x) if x.right \neq NILL return Tree-Min(x.right)
$y=x . p$
while $y \neq$ NIL and $x==y$.right $x=y$
$y=x . p$
return y

predecessor?

In-order traversal, successor, and predecessor!

In-order can be though of as a projection on a horizontal line!

insert

1.find place where z belongs
 2.insert z there

insert

Tree-Insert(T,z)
 $y=$ NIL
 $x=$ T.root while $x \neq$ NIL

$y=x$
if z.key < x.key
$x=x . l e f t$
else
$x=x$.right
$z . p=y$
if z.key < y.key
y.left = z
else
y. right $=z$

delete(x)

$$
\begin{aligned}
& \text { 1. } x \text { has no children } \\
& \text { 2. } x \text { has one children } \\
& \text { 3. } x \text { has two children }
\end{aligned}
$$

Deletion case 1

Dlf x has no children, just remove x

Deletion case 2

ulf x has exactly one child, just remove x and make x.p point to that child

Deletion case 3

\square If x has two children, then to delete

1. find its successor (or predecessor) y
2. remove y
3. replace x with y

Given a set of n numbers,

 how much time does it take to create a BST of n numbers!
Create a BST of n sorted numbers!

Time complexity?

Given two sorted arrays (distinct numbers) of size n each, find pairs whose some is equal to N .
$A 1=(1,2,3)$
$A 2=(4,5,6)$
$N=6$
Output: $(1,5)(2,4)$

Suppose a tree represents road network, where edge is the road and nodes are the cities, find shortest distance between two cities!

Given n_{1} and n_{2}, find lowest common ancestor of n_{1} and n_{2} in a BST

Bottom-up Solution

1. Search for $n_{1}-\log n$
2. Search for $n_{2}-\log n$
3. Compare node n_{1} with node n_{2}, if they are the same, done
4. Include nodes alternatively from L_{1} and L_{2} until a match is found

Bottom-up Solution

1. Search for $n_{1}-\log n$, store nodes in a list L1
2. Search for $n_{2}-\log n$, store nodes in a list $L 2$
3. Start from deepest node in L1,
4. Compare with all nodes in L2
5. If matched, LCA is found so abort
6. Else go up in L2 and repeat 3

Top-down Approach

1. Search for $n_{1}-\log n$, store nodes in a list L1
2. Search for $n_{2}-\log n$, store nodes in a list L2

- Start Matching corresponding elements in L1 and L2, the first mismatch is LCA

Top-down Solution

- Start from root and keep going down until
- The node n is equal to n_{1} or n_{2}, that node is LCA
- The node n is greater than n_{1} and less than n_{2}
- If n_{1} and n_{2} are less than n, go left, otherwise go right

