
Lecture 3

Arrays and Linked
Lists

Student Record
public class Student {

 private:
 int ID;
 double score;
 …
 public:
 double getScore(){
 return score;
 }
 …

}

Student Mohan;
Student Sohan;

Arrays
sequenced collection of

variables of the same type

0 1 i n
A

int[] A = {8, 2, 5…};
A[i] = 9;

9
0 1 i n

A

Student*	st_list[100];	
for		(int	i=0;i++;i<100)	
		 	st_list[i]=new	Student(ID,	score);	
double	score	=	st_list[i]->getScore();	

8	 2	 5	 7	 3	 8	

Shyam

Ram

Sohan Mohan

Ramesh
Suresh

Array of Objects

Array of Integers

What operations are
performed on an

array?

Sorting
Min/Max

Addition/Deletion

Sorting

Insertion Sort
Insert elements at right

place one by one!

5 2	 7 8 4 1 9

Min/Max

5 2	 7 8 4 1 9

5 2	 7 8 4 1 9 Sorted

Unsorted

Addition

A

0 1 i n
A

e
0 1 i n

A

e

Deletion

A

e
0 1 i n

A

0 1 i n
A

Array Limitations?
1.  Fixed capacity
2.  Empty cells
3.  Expensive Addition/

Removal

How to add new
element?

7 2 5

Φ Φ Φ

4

Linked List

4 7 2

Head

Φ

Add A at Head

4 7 2 Φ

A Head

A

Add B at the End

4 7 2

Head

Φ A

B Φ

B

Tail

Remove A

4 7 2

Head

A

B Φ Tail

Remove B

4 7 2

Head

B Φ

Tail

Remove B

4 7 2

Head

B Φ

Tail

Doubly Linked List

2 5

Head
7

Tail

{next, E, prev}

Insert A

2 7

A

Insert A
A

2 7

Remove A

2 7

A

Remove A

A 2 7

Where do we use
linked list?

•  constant time addition/deletion
•  number of items not known
•  don’t need random access
•  insert anywhere

Disadvantages with
respect to arrays?

A Linked List Node

✐

✐

“main” — 2011/1/13 — 9:10 — page 118 — #140
✐

✐

✐

✐

✐

✐

118 Chapter 3. Arrays, Linked Lists, and Recursion

class StringNode { // a node in a list of strings
private:

string elem; // element value
StringNode* next; // next item in the list

friend class StringLinkedList; // provide StringLinkedList access
};

Code Fragment 3.13: A node in a singly linked list of strings.

In Code Fragment 3.14, we define a class StringLinkedList for the actual linked
list. It supports a number of member functions, including a constructor and destruc-
tor and functions for insertion and deletion. Their implementations are presented
later. Its private data consists of a pointer to the head node of the list.

class StringLinkedList { // a linked list of strings
public:

StringLinkedList(); // empty list constructor
˜StringLinkedList(); // destructor
bool empty() const; // is list empty?
const string& front() const; // get front element
void addFront(const string& e); // add to front of list
void removeFront(); // remove front item list

private:
StringNode* head; // pointer to the head of list

};
Code Fragment 3.14: A class definition for a singly linked list of strings.

A number of simple member functions are shown in Code Fragment 3.15. The
list constructor creates an empty list by setting the head pointer to NULL. The de-
structor repeatedly removes elements from the list. It exploits the fact that the func-
tion remove (presented below) destroys the node that it removes. To test whether
the list is empty, we simply test whether the head pointer is NULL.

StringLinkedList::StringLinkedList() // constructor
: head(NULL) { }

StringLinkedList::˜StringLinkedList() // destructor
{ while (!empty()) removeFront(); }

bool StringLinkedList::empty() const // is list empty?
{ return head == NULL; }

const string& StringLinkedList::front() const // get front element
{ return head−>elem; }

Code Fragment 3.15: Some simple member functions of class StringLinkedList.

Linked List Class

✐

✐

“main” — 2011/1/13 — 9:10 — page 118 — #140
✐

✐

✐

✐

✐

✐

118 Chapter 3. Arrays, Linked Lists, and Recursion

class StringNode { // a node in a list of strings
private:

string elem; // element value
StringNode* next; // next item in the list

friend class StringLinkedList; // provide StringLinkedList access
};

Code Fragment 3.13: A node in a singly linked list of strings.

In Code Fragment 3.14, we define a class StringLinkedList for the actual linked
list. It supports a number of member functions, including a constructor and destruc-
tor and functions for insertion and deletion. Their implementations are presented
later. Its private data consists of a pointer to the head node of the list.

class StringLinkedList { // a linked list of strings
public:

StringLinkedList(); // empty list constructor
˜StringLinkedList(); // destructor
bool empty() const; // is list empty?
const string& front() const; // get front element
void addFront(const string& e); // add to front of list
void removeFront(); // remove front item list

private:
StringNode* head; // pointer to the head of list

};
Code Fragment 3.14: A class definition for a singly linked list of strings.

A number of simple member functions are shown in Code Fragment 3.15. The
list constructor creates an empty list by setting the head pointer to NULL. The de-
structor repeatedly removes elements from the list. It exploits the fact that the func-
tion remove (presented below) destroys the node that it removes. To test whether
the list is empty, we simply test whether the head pointer is NULL.

StringLinkedList::StringLinkedList() // constructor
: head(NULL) { }

StringLinkedList::˜StringLinkedList() // destructor
{ while (!empty()) removeFront(); }

bool StringLinkedList::empty() const // is list empty?
{ return head == NULL; }

const string& StringLinkedList::front() const // get front element
{ return head−>elem; }

Code Fragment 3.15: Some simple member functions of class StringLinkedList.

Bookkeeping

✐

✐

“main” — 2011/1/13 — 9:10 — page 118 — #140
✐

✐

✐

✐

✐

✐

118 Chapter 3. Arrays, Linked Lists, and Recursion

class StringNode { // a node in a list of strings
private:

string elem; // element value
StringNode* next; // next item in the list

friend class StringLinkedList; // provide StringLinkedList access
};

Code Fragment 3.13: A node in a singly linked list of strings.

In Code Fragment 3.14, we define a class StringLinkedList for the actual linked
list. It supports a number of member functions, including a constructor and destruc-
tor and functions for insertion and deletion. Their implementations are presented
later. Its private data consists of a pointer to the head node of the list.

class StringLinkedList { // a linked list of strings
public:

StringLinkedList(); // empty list constructor
˜StringLinkedList(); // destructor
bool empty() const; // is list empty?
const string& front() const; // get front element
void addFront(const string& e); // add to front of list
void removeFront(); // remove front item list

private:
StringNode* head; // pointer to the head of list

};
Code Fragment 3.14: A class definition for a singly linked list of strings.

A number of simple member functions are shown in Code Fragment 3.15. The
list constructor creates an empty list by setting the head pointer to NULL. The de-
structor repeatedly removes elements from the list. It exploits the fact that the func-
tion remove (presented below) destroys the node that it removes. To test whether
the list is empty, we simply test whether the head pointer is NULL.

StringLinkedList::StringLinkedList() // constructor
: head(NULL) { }

StringLinkedList::˜StringLinkedList() // destructor
{ while (!empty()) removeFront(); }

bool StringLinkedList::empty() const // is list empty?
{ return head == NULL; }

const string& StringLinkedList::front() const // get front element
{ return head−>elem; }

Code Fragment 3.15: Some simple member functions of class StringLinkedList.

Add at Front

✐

✐

“main” — 2011/1/13 — 9:10 — page 119 — #141
✐

✐

✐

✐

✐

✐

3.2. Singly Linked Lists 119

3.2.2 Insertion to the Front of a Singly Linked List

We can easily insert an element at the head of a singly linked list. We first create a
new node, and set its elem value to the desired string and set its next link to point to
the current head of the list. We then set head to point to the new node. The process
is illustrated in Figure 3.10.

(a)

(b)

(c)

Figure 3.10: Insertion of an element at the head of a singly linked list: (a) before
the insertion; (b) creation of a new node; (c) after the insertion.

An implementation is shown in Code Fragment 3.16. Note that access to the
private members elem and next of the StringNode class would normally be prohib-
ited, but it is allowed here because StringLinkedList was declared to be a friend of
StringNode.

void StringLinkedList::addFront(const string& e) { // add to front of list
StringNode* v = new StringNode; // create new node
v−>elem = e; // store data
v−>next = head; // head now follows v
head = v; // v is now the head

}
Code Fragment 3.16: Insertion to the front of a singly linked list.

3.2.3 Removal from the Front of a Singly Linked List

Next, we consider how to remove an element from the front of a singly linked list.
We essentially undo the operations performed for insertion. We first save a pointer

Remove from Front

✐

✐

“main” — 2011/1/13 — 9:10 — page 120 — #142
✐

✐

✐

✐

✐

✐

120 Chapter 3. Arrays, Linked Lists, and Recursion

to the old head node and advance the head pointer to the next node in the list. We
then delete the old head node. This operation is illustrated in Figure 3.11.

(a)

(b)

(c)

Figure 3.11: Removal of an element at the head of a singly linked list: (a) before
the removal; (b) “linking out” the old new node; (c) after the removal.

An implementation of this operation is provided in Code Fragment 3.17. We
assume that the user has checked that the list is nonempty before applying this
operation. (A more careful implementation would throw an exception if the list
were empty.) The function deletes the node in order to avoid any memory leaks.
We do not return the value of the deleted node. If its value is desired, we can call
the front function prior to the removal.

void StringLinkedList::removeFront() { // remove front item
StringNode* old = head; // save current head
head = old−>next; // skip over old head
delete old; // delete the old head

}

Code Fragment 3.17: Removal from the front of a singly linked list.

It is noteworthy that we cannot as easily delete the last node of a singly linked
list, even if we had a pointer to it. In order to delete a node, we need to update the
next link of the node immediately preceding the deleted node. Locating this node
involves traversing the entire list and could take a long time. (We remedy this in
Section 3.3 when we discuss doubly linked lists.)

Doubly Linked List Node
class	DNode{	
private:		
	Elem	elem;	
	DNode*	prev;	
	DNode*	next;	
	friend	class	DLinkedList;	

}	

Doubly Linked List Class
class	DLinkedList{	

	public:	
	 			DLinkedList();	
	 	~DLinkedList();	
	 			bool	empty()	const;	
	 			const	Elem&	front()	const;	
	 			const	Elem&	back()	const;	
	 			void	addFront(const	Elem&	e);	
	 			void	addBack(const	Elem&	e);	
	 			void	removeFront();	
	 			void	removeBack();	
	private:	
	 				DNode*	header;	
	 				DNode*	trailer;	
		protected:	
	 					void	add(DNode*	v,	const	Elem&	e);	
	 						void	remove(DNode*	v);	

}; 	 			 	 	 		

Constructor
DLinkedList::DLinkedList(){

 header = new DNode;
 trailer = new DNode;
 header->next = trailer;
 trailer-> prev = header;

}

header

trailer

Singly linked list

trailer header nodes

elements

Doubly linked list
elements

header nodes
∅

Circular Linked Lists

cursor

Given the head, how will
you find that there is a

cycle in the list?

head	

Solutions
•  Traverse until end?
•  Traverse until find head again?
•  Mark each node?
•  Create list of nodes visited so far and match

the current node!
•  Reverse the list
•  Fas-slow iterators

