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Which data structure is 
good for the given 

problem? 



V
inegar 

Algorithm 



Each data structure 
enables certain 

algorithms! 



How to characterize 
an algorithm? 



Some criteria 
1.   Correctness 

2.   Time efficient 
3.    Memory efficient 
4.   Coding efficient 



How to measure the 
time efficiency of an 

algorithm? 



Empirical: Run and Record 
•  Implement the algorithm 
•  vary the input size 
•  use function like clock() 

to record 
•  plot input size vs time 
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Limitations  
•  need to implement 
•  need time to run for all inputs 
•  same hardware and software 

environment required 



Theoretical Analysis 
• only needs high level 

description 
•   platform independent 
• no implementation required 



Pseudocode! 
•  High-level description of an algorithm 
•  More structured than English prose 
•  Less detailed than a program 
•  Preferred notation for describing 

algorithms 
•  Hides program design issues 
 



Algorithm arrayMax(A, n) 
 Input: array A of n integers 
 Output: maximum element of A 

 currentMax ← A[0] 
 for i ← 1 to n - 1 do 
  if A[i] > currentMax then 
   currentMax ← A[i] 
 return currentMax  

  Example: find max element of an array 



if condition then  
 true-actions  

else  
 false-actions 

 
 
 

while condition do 
 actions 

 
repeat  

 action 
until condition 
 



Primitive operations 
•  Basic computations, e.g. assignment, 

evaluating expression, array indexing 

•  call function /return from a function 



Main Assumptions 
•  sequential execution 
•  primitive operations take fairly similar time 

to execute 
•  [RAM MODEL] accessing elements takes 

constant time 



Random Access Machine 

q  A CPU 
q  Unbounded memory 
q Unit access time 0 

1 
2 



counting number of 
primitive operations 

Algorithm arrayMax(A, n)                             # operations 
 currentMax ← A[0]         2 
 for i ← 1 to n - 1 do        2n+2 
  if A[i] > currentMax then      2(n - 1) 
   currentMax ← A[i]       0 to 2(n - 1) 
 return currentMax         1 

       

worst case = 6n+1 best case = 4n+3 



Worst case 

T (n) = 6n+1 

Best case 

T(n) = 4n+3 

What is the average case? 
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We will characterize 
running time in terms 

of worst case!  



What is the worst 
case running time of 

insertion sort? 



Insertion Sort  
Insert elements at right 

place one by one! 

5 2	 7 8 4 1 9 



Insertion Sort 
1.  for j=2 to n 
2.   key = A[j]; 
3.   //Insert A[j] into sorted sequence A[1…j-1] 
4.    i=j-1 
5.   while i > 0 and A[i] > key 
6.     A[i+1]=A[i] 
7.     i=i-1; 
8.  A[i+1] = key; 



Which one takes longer? 

void pushAll (int k){ 

 for (int i=0; i<= 100*k; i++) 

  {  

  list.add(i);  

  } 

 }  

void pushAdd(int k) {     
 for (int i=0; i<= k; i++){  
  for (int j=0; j<= k; j++){  
   list.add(i+j); 
  } 
 }  

}  

100K add operations K2 add operations 



Which grows faster? 
f(k)=100K f(k)=k2 

f(0) = 0 f(0)=0 

f(1)=100 f(1) = 1 

f(100) = 104 f(100)=104 

f(1000)=105 f(1000)=106 



Growth is more 
important than actual 

running time! 



Growth Rate of Running 
Time 

•  hardware/ software environment  
– affects by a constant factor 
– does not alter the growth rate 

•  growth rate is an intrinsic property 
of algorithm 



Comparing Two Algorithms 

To sort 1 million 
items: 
-insertion sort (n2/4) 
takes 70 hours 
-merge sort(n log n) 
takes 40 seconds 

  



Growth rate is not affected by 
constant or lower order terms! 

q 102n+105 

q 105n2 + 108n 

1E+0
1E+2
1E+4
1E+6
1E+8
1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n
)

Quadratic
Quadratic
Linear
Linear



Asymptotic Notation 

Big-Oh 



We say f(n) is O(g(n)) if f(n) ≤ cg(n) 
for some c and n>n0! 

E.g. 2n+10 is O(n), how? 
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Big-Oh notation allows us 
to ignore constant factors 

and lower order terms! 



Look for simplest 
terms for expressing 

Big-Oh! 



Big-Oh Examples 
•  7n-2  is O(n) 

 

•  3n3 + 20n2 + 5 is O(n3) 

 

•  3 log n + 5 is O(log n) 

need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0 
this is true for c = 7 and n0 = 1 

need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥ n0 
this is true for c = 4 and n0 = 21 

need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n0 
this is true for c = 8 and n0 = 2 



Not Big-Oh Example 
q the function n2 is 

not O(n) 
q n2 ≤ cn 
q not possible 
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Big-Oh and Growth Rate 

•  gives an upper bound 
•  f(n) is O(g(n)) tells f(n) does not grow faster 

than g(n) 
•  Can be used to compare algorithms 



Focus on the main factor 
that determines the 

growth rate! 



Running time grows 
proportional to a 

“specific” function of n 
within a constant factor!   



The Seven Important 
Functions 



Some Important Functions 
•  Constant ≈ 1 
•  Logarithmic ≈ log n 
•  Linear ≈ n 
•  N-Log-N ≈ n log n 
•  Quadratic ≈ n2 

•  Cubic ≈ n3 

•  Exponential ≈ 2n 



Constant ≈ 1 

g(n) = 1 



Logarithmic ≈ log n 

g(n) = lg n 



Linear ≈ n 

g(n) = n 



N-Log-N ≈ n log n 

g(n) = n lg n 



Quadratic ≈ n2 

g(n) = n2 



Cubic ≈ n3 

g(n) = n3 



Exponential ≈ 2n 

g(n) = 2n 



Growth rate on Log Scale 

✐

✐

“main” — 2011/1/13 — 9:10 — page 161 — #183
✐

✐

✐

✐

✐

✐

4.1. The Seven Functions Used in This Book 161

4.1.8 Comparing Growth Rates

To sum up, Table 4.1 shows each of the seven common functions used in algorithm
analysis in order.

constant logarithm linear n-log-n quadratic cubic exponential
1 logn n n logn n2 n3 an

Table 4.1: Classes of functions. Here we assume that a > 1 is a constant.

Ideally, we would like data structure operations to run in times proportional
to the constant or logarithm function, and we would like our algorithms to run in
linear or n-log-n time. Algorithms with quadratic or cubic running times are less
practical, but algorithms with exponential running times are infeasible for all but
the smallest sized inputs. Plots of the seven functions are shown in Figure 4.2.
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Figure 4.2: Growth rates for the seven fundamental functions used in algorithm
analysis. We use base a = 2 for the exponential function. The functions are plotted
in a log-log chart, to compare the growth rates primarily as slopes. Even so, the
exponential function grows too fast to display all its values on the chart. Also, we
use the scientific notation for numbers, where aE+b denotes a10b.

The Ceiling and Floor Functions

One additional comment concerning the functions above is in order. The value
of a logarithm is typically not an integer, yet the running time of an algorithm is
usually expressed by means of an integer quantity, such as the number of operations
performed. Thus, the analysis of an algorithm may sometimes involve the use of
the floor function and ceiling function, which are defined respectively as follows:

• ⌊x⌋ = the largest integer less than or equal to x
• ⌈x⌉ = the smallest integer greater than or equal to x



Asymptotic Analysis 



1. measure running 
time in terms of input 
2. calculate Big-Oh 

of the function 



Example 
•  worst case running time of arrayMax  
–  f(n) = 6n+1 

•  Big-Oh of f(n) if n, i.e. 
– 6n+1 is O(n) 

•  constant factors can be ignored while 
counting primitives itself 



Rules of thumb 



Polynomial Runtime 
•  Drop lower order terms 
•  Drop constants 
•  f(n) = aknk+ak-1nk-1…+a0 

– f(n) is O(nk)  



Loops 
cost = (#iterations)×(#max cost of one iteration) 

int sum (int A[], int n){ 
 int total=0;  
 for (int i=0; i<= n; i++) 
  {  
  total=total+A[i];  
  } 
 return total; 

 }  

O(n) 



Nested Loops 
cost = (#iterations)×(#max cost of one iteration) 

O(n2) 

n iterations int sum (int A[][], int n){ 
 int total=0;  
 for (int i=0; i<= n; i++) 
  {  
   for (int j=0; i<= n; j++) 
     total=total+A[i][j];  
  } 
 return total; 

 }  



Sequential Statements 
cost = (#cost of first)+(#cost of second) 

int sum (int A[], int B[], int n){ 
 int totalA=0; int totalB=0;   
 for (int i=0; i<= n; i++){  
   totalA=totalA+A[i];  
  } 
 for (int j=0; i<= n; j++){ 
     totalB=totalB+B[j]; 
 }  
 return totalA+totalB; 

 }  

cost of most costly 
step matters, i.e., 

O(n) 



if/else 
cost = max(cost of first, cost of second) 
 

void sum (int A[], int n){ 
 int total=0;  
 for (int i=0; i<= n; i++) 
  {  
   if (i%2==0) 
     //first action 
   else 
     // second action 
  } 

 }  

O(n*max) 



Line between efficient 
and inefficient? 


