Lecture 5

Algorithm Analysis

Slides modified from: © 2010 Goodrich, Tamassia

Which data structure is good for the given problem?

Algorithm

Each data structure enables certain algorithms!

How to characterize an algorithm?

Some criteria

1. Correctness
2. Time efficient
3. Memory efficient
4. Coding efficient

How to measure the time efficiency of an algorithm?

Empirical: Run and Record

- Implement the algorithm
- vary the input size
- use function like clock() to record
- plot input size vs time

Limitations

- need to implement
- need time to run for all inputs
- same hardware and software environment required

Theoretical Analysis

- only needs high level description
- platform independent
- no implementation required

Pseudocode!

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm arrayMax(A, n)
Input: array A of n integers
Output: maximum element of A
currentMax $\leftarrow A[0]$
for $i \leftarrow 1$ to $n-1$ do
if $A[i]>$ currentMax then
currentMax $\leftarrow A[i]$
return currentMax

while condition do

 actionsrepeat action
until condition

Primitive operations

- Basic computations, e.g. assignment, evaluating expression, array indexing
- call function /return from a function

Main Assumptions

- sequential execution
- primitive operations take fairly similar time to execute
- [RAM MODEL] accessing elements takes constant time

Random Access Machine

$\square \mathrm{ACPU}$
\square Unbounded memory
\square Unit access time

counting number of primitive operations

Algorithm arrayMax(A, n) currentMax $\leftarrow A[0]$ for $i \leftarrow 1$ to $n-1$ do \# operations if $A[i]>$ currentMax then currentMax $\leftarrow A[i]$ return currentMax

```
    2n+2
    2(n-1)
    0 to 2(n-1)
    1
```


Worst case

Best case

$$
T(n)=6 n+1 \quad T(n)=4 n+3
$$

What is the average case?

We will characterize running time in terms of worst case!

> What is the worst case running time of insertion sort?

Insertion Sort

 Insert elements at right place one by one!\section*{| 5 | 2 | 7 | 8 | 4 | 1 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

\square

Insertion Sort

1. for $\mathrm{j}=2$ to n
2. $\mathrm{key}=\mathrm{A}[j]$;
3. //Insert $A[j]$ into sorted sequence $A[1 \ldots j-1]$
4. $i=j-1$
5. while $\mathrm{i}>0$ and $\mathrm{A}[\mathrm{i}]>$ key
6. $A[i+1]=A[i]$
7. $i=i-1$;
8. $A[i+1]=k e y$;

Which one takes longer?

void pushAll (int k)\{
for (int i=0; i<= 100*k; i++)
\{
$\begin{aligned} & \text { list.add(i); } \\ & \}\end{aligned}$
100K add operations

```
void pushAdd(int k) {
    for (int i=0; i<= k; i++){
        for (int j=0; j<= k; j++){
        list.add(i+j);
        }
    }
}
```


Which grows faster?

$f(k)=100 K$	$f(k)=k^{2}$
$f(0)=0$	$f(0)=0$
$f(1)=100$	$f(1)=1$
$f(100)=10^{4}$	$f(100)=10^{4}$
$f(1000)=10^{5}$	$f(1000)=10^{6}$

> Growth is more important than actual running time!

Growth Rate of Running

 Time

 Time}

- hardware/ software environment -affects by a constant factor -does not alter the growth rate
- growth rate is an intrinsic property of algorithm

Comparing Two Algorithms

To sort 1 million items:
-insertion sort ($n^{2} / 4$) takes 70 hours -merge sort(n log n) takes 40 seconds
insertion sort vs merge sort

\because insertion sort $=$ merge sort

Growth rate is not affected by constant or lower order terms!

$\square 10^{2} n+10^{5}$

 $\square 105 n^{2}+10^{8} n$

Asymptotic Notation

> Big-Oh

We say $f(n)$ is $O(g(n))$ if $f(n) \leq c g(n)$ for some c and $n>n_{0}$! E.g. $2 n+10$ is $O(n)$, how?

Big-Oh notation allows us to ignore constant factors and lower order terms!

Look for simplest terms for expressing Big-Oh!

Big-Oh Examples

- $7 \mathrm{n}-2$ is $\mathrm{O}(\mathrm{n})$
need $c>0$ and $n_{0} \geq 1$ such that $7 n-2 \leq c \bullet n$ for $n \geq n_{0}$ this is true for $\mathrm{c}=7$ and $\mathrm{n}_{0}=1$
- $3 n^{3}+20 n^{2}+5$ is $O\left(n^{3}\right)$
need $c>0$ and $n_{0} \geq 1$ such that $3 n^{3}+20 n^{2}+5 \leq c \bullet n^{3}$ for $n \geq n_{0}$ this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=21$
- $3 \log n+5$ is $O(\log n)$ need $c>0$ and $n_{0} \geq 1$ such that $3 \log n+5 \leq c \bullet \log n$ for $n \geq n_{0}$ this is true for $\mathrm{c}=8$ and $\mathrm{n}_{0}=2$

Not Big-Oh Example

\square the function n^{2} is not $O(n)$
 $\square \mathrm{n}^{2} \leq \mathrm{cn}$

Unot possible

Big-Oh and Growth Rate

- gives an upper bound
- $f(n)$ is $O(g(n))$ tells $f(n)$ does not grow faster than $g(n)$
- Can be used to compare algorithms

Focus on the main factor that determines the growth rate!

Running time grows

 proportional to a "specific" function of n within a constant factor!
The Seven Important Functions

Some Important Functions

- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx \mathrm{n}$
- N-Log-N $\approx n \log n$
- Quadratic $\approx n^{2}$
- Cubic $\approx n^{3}$
- Exponential $\approx 2^{n}$

Constant ≈ 1

Logarithmic $\approx \log n$

Linear $\approx \mathrm{n}$

$N-L o g-N \approx n \log n$

Quadratic $\approx \mathrm{n}^{2}$

Cubic $\approx n^{3}$

Exponential $\approx 2^{n}$

Growth rate on Log Scale

Asymptotic Analysis

1. measure running

 time in terms of input 2. calculate Big-Oh of the function
Example

- worst case running time of arrayMax

$$
-f(n)=6 n+1
$$

- Big-Oh of $f(n)$ if n, i.e.
$-6 n+1$ is $O(n)$
- constant factors can be ignored while counting primitives itself

Rules of thumb

Polynomial Runtime

- Drop lower order terms
- Drop constants
- $f(n)=a_{k} n^{k}+a_{k-1} n^{k-1} \ldots+a_{0}$
$-f(n)$ is $O\left(n^{k}\right)$

Loops

cost $=$ (\#iterations) \times (\#max cost of one iteration)

int sum (int A[], int n)\{
int total=0;
for (int $\mathrm{i}=0 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
\{
total=total+A[i];
\}
return total;
\}

Nested Loops

cost $=$ (\#iterations $) \times(\#$ max cost of one iteration)

```
int sum (int A[[]], int n){
    int total=0;
    for (int i=0; i<= n; i++)
    {
        for (int j=0; i<= n; j++)
                        total=total+A[i][j];
        }
    return total;
}
```


Sequential Statements

cost $=(\# \operatorname{cost}$ of first $)+(\#$ cost of second $)$
int sum (int $A[]$, int $B[]$, int n)\{

$$
\begin{align*}
& \text { int total } A=0 \text {; int total } B=0 \text {; } \\
& \text { for (int } i=0 ; i<=n ; i++)\{ \\
& \text { totalA=totalA }+A[i] \text {; } \\
& \text { \} } \\
& \text { for (int } j=0 ; i<=n ; j++)\{ \tag{n}\\
& \text { total } \mathrm{B}=\text { total } \mathrm{B}+\mathrm{B}[\mathrm{j}] \text {; } \\
& \text { \} } \\
& \text { cost of most costly } \\
& \text { step matters, i.e., } \\
& \text { return totalA+totalB; }
\end{align*}
$$

\}

if/else

cost $=\max ($ cost of first, cost of second $)$

$O\left(n^{*} \max \right)$

Line between efficient and inefficient?

