Lecture 5 Algorithm Analysis

Slides modified from: © 2010 Goodrich, Tamassia

Which data structure is good for the given problem?

Algorithm

Each data structure enables certain algorithms!

How to characterize an algorithm?

Some criteria

- 1. Correctness
- 2. Time efficient
- 3. Memory efficient
- 4. Coding efficient

How to measure the time efficiency of an algorithm?

Empirical: Run and Record

- Implement the algorithm
- vary the input size
- use function like clock() to record
- plot input size vs time

Limitations

- need to implement
- need time to run for all inputs
- same hardware and software environment required

Theoretical Analysis

- only needs high level description
- platform independent
- no implementation required

Pseudocode!

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm arrayMax(A, n) Input: array A of *n* integers Output: maximum element of A currentMax \leftarrow A[0] for $i \leftarrow 1$ to n - 1 do if A[i] > currentMax then currentMax $\leftarrow A[i]$ return currentMax

if *condition* then true-actions

else

false-actions

while condition do actions

repeat action until condition

Primitive operations

- Basic computations, e.g. assignment, evaluating expression, array indexing
- call function /return from a function

Main Assumptions

- sequential execution
- primitive operations take fairly similar time to execute
- [RAM MODEL] accessing elements takes constant time

Random Access Machine

A CPU
Unbounded memory
Unit access time

counting number of primitive operations

Algorithm arrayMax(A, n) # $currentMax \leftarrow A[0]$ for $i \leftarrow 1$ to n - 1 do if A[i] > currentMax then $currentMax \leftarrow A[i]$ return currentMax

operations 2 2*n+2* 2(*n* - 1) 0 to 2(*n* - 1) 1

worst case = 6n+1 best case = 4n+3

Worst caseBest caseT (n) = 6n+1T(n) = 4n+3

What is the average case?

We will characterize running time in terms of worst case!

What is the worst case running time of insertion sort?

Insertion Sort Insert elements at right place one by one!

Insertion Sort

2. key =
$$A[j];$$

3. //Insert A[j] into sorted sequence A[1...j-1]

5. while i > 0 and A[i] > key

8. A[i+1] = key;

Which one takes longer?

```
void pushAll (int k){
  for (int i=0; i<= 100*k; i++)
   {
    list.add(i);
   }
}</pre>
```

void pushAdd(int k) {
 for (int i=0; i<= k; i++){
 for (int j=0; j<= k; j++){
 list.add(i+j);
 }
}</pre>

100K add operations

K² add operations

Which grows faster?	
f(k)=100K	f(k)=k ²
f(0) = 0	f(0)=0
f(1)=100	f(1) = 1
$f(100) = 10^4$	f(100)=10 ⁴
f(1000)=10 ⁵	f(1000)=10 ⁶

Growth is more important than actual running time!

Growth Rate of Running Time

- hardware/ software environment

 affects by a constant factor
 does not alter the growth rate
- growth rate is an intrinsic property of algorithm

Comparing Two Algorithms

To sort 1 million items: -insertion sort (n²/4) takes 70 hours

-merge sort(n log n) takes 40 seconds

Growth rate is not affected by constant or lower order terms!

□10²n+10⁵ □105n² + 10⁸n

Asymptotic Notation Big-Oh

We say f(n) is O(g(n)) if $f(n) \le cg(n)$ for some c and $n > n_0!$

E.g. 2n+10 is O(n), how?

Big-Oh notation allows us to ignore constant factors and lower order terms!

Look for simplest terms for expressing Big-Oh!

Big-Oh Examples

• 7n-2 is O(n)

need c > 0 and $n_0 \ge 1$ such that $7n-2 \le c \bullet n$ for $n \ge n_0$ this is true for c = 7 and $n_0 = 1$

- $3n^3 + 20n^2 + 5$ is $O(n^3)$ need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 21$
- $3 \log n + 5 \text{ is } O(\log n)$ need c > 0 and $n_0 \ge 1$ such that 3 log n + 5 ≤ c•log n for n ≥ n_0 this is true for c = 8 and $n_0 = 2$

Not Big-Oh Example

□the function n² is not O(n)
 □n² ≤ cn
 □not possible

Big-Oh and Growth Rate

- gives an upper bound
- f(n) is O(g(n)) tells f(n) does not grow faster than g(n)
- Can be used to compare algorithms

Focus on the main factor that determines the growth rate!

Running time grows proportional to a "specific" function of n within a constant factor!

The Seven Important Functions

Some Important Functions

- Constant ≈ 1
- Logarithmic ≈ log n
- Linear ≈ n
- N-Log-N ≈ n log n
- Quadratic $\approx n^2$
- Cubic $\approx n^3$
- Exponential $\approx 2^n$

Constant ≈ 1

Logarithmic ≈ log n

Linear ≈ n

N-Log-N ≈ n log n

Quadratic $\approx n^2$

Cubic $\approx n^3$

Exponential $\approx 2^n$

Growth rate on Log Scale

Asymptotic Analysis

1. measure running time in terms of input 2. calculate Big-Oh of the function

Example

- worst case running time of arrayMax
 f(n) = 6n+1
- Big-Oh of f(n) if n, i.e.
 6n+1 is O(n)
- constant factors can be ignored while counting primitives itself

Rules of thumb

Polynomial Runtime

- Drop lower order terms
- Drop constants
- $f(n) = a_k n^k + a_{k-1} n^{k-1} \dots + a_0$ -f(n) is O(n^k)

Loops

cost = (#iterations)×(#max cost of one iteration)

O(n)

```
int sum (int A[], int n){
    int total=0;
    for (int i=0; i<= n; i++)
    {
      total=total+A[i];
      }
    return total;</pre>
```

Nested Loops

cost = (#iterations)×(#max cost of one iteration)

```
int sum (int A[][], int n){
    int total=0;
    for (int i=0; i<= n; i++)
    {
        for (int j=0; i<= n; j++)
            total=total+A[i][j];
        }
    return total;
}</pre>
```

n iterations

```
O(n<sup>2</sup>)
```

Sequential Statements

cost = (#cost of first)+(#cost of second)

```
int sum (int A[], int B[], int n){
    int totalA=0; int totalB=0;
    for (int i=0; i<= n; i++){
        totalA=totalA+A[i];
     }
    for (int j=0; i<= n; j++){
        totalB=totalB+B[j];
    }
    return totalA+totalB;</pre>
```

cost of most costly step matters, i.e., O(n)

if/else

cost = max(cost of first, cost of second)

```
void sum (int A[], int n){
    int total=0;
    for (int i=0; i<= n; i++)
    {
        if (i%2==0)
            //first action
        else
            // second action
     }
</pre>
```

O(n*max)

Line between efficient and inefficient?