Lecture 5

Algorithm Analysis

Slides modified from: © 2010 Goodrich, Tamass ia

Which data structure is
good for the given
problem?

I

Algorithm

-0 4

Each data structure
enables certain
algorithms!

How to characterize
an algorithm?

Some criteria

1. Correctness
2. Time efficient
3. Memory efficient
4. Coding efficient

How to measure the
time efficiency of an
algorithm?

Empirical: Run and Record

* Implement the algorithm
» vary the input size

 use function like clock()
to record

* plot input size vs time

9000
8000
7000

Time (ms)
& g o
o e O
o e O
o o O

W
(=
(=
o

2000
1000

Input Size

100

Limitations

* need to implement
* need time to run for all inputs

 same hardware and software
environment required

Theoretical Analysis

* only needs high level
description

» platform independent
* no implementation required

Pseudocodel

High-level description of an algorithm
More structured than English prose
Less detailed than a program

Preferred notation for describing
algorithms

Hides program design issues

Example: find max element of an array

Algorithm arrayMax(A, n)
Input: array A of n integers
Output: maximum element of A

currentMax < A[O]
fori<— 1ton-1do
if A[i] > currentMax then
currentMax <— All]
return currentMax

if condition then
true-actions

else
false-actions

while condition do
actions

repeat
action
until condition

Primitive operations

 Basic computations, e.g. assignment,

evaluating expression, array indexing

e call function /return from a function

Main Assumptions

» sequential execution

* primitive operations take fairly similar time
to execute

« [RAM MODEL] accessing elements takes
constant time

Random Access Machine

d ACPU
1 Unbounded memory

2 []
JUnit access time 01'

counting number of
primitive operations

Algorithm arrayMax(A, n) # operations
currentMax < A[0O] E

fori—=1ton-1do 2n+2
if Ali] > currentMax then 2(n-1)
currentMax < A[i] Oto2(n-1)
return currentMax 1

worst case = 6n+1 best case = 4n+3

Worst case Best case

T (n) = 6n+1 T(n) = 4n+3

What is the average case?

120
100
80
60
40
20

Running Time

O best case
E average case
[J worst case

=

1000 2000 3000 4000
Input Size

We will characterize
running time Iin terms
of worst case!

What is the worst
case running time of
iInsertion sort?

Insertion Sort
Insert elements at right
place one by onel

5/2]7|8f4]1]9

Insertion Sort

O N O UTR WN

. forj=2ton
key = A[jl;
//Insert A[j] into sorted sequence A[1...j-1]
i=j-1
while i > 0 and A[i] > key
Ali+1]=A][i]
=i-1;
. Ali+1] = key;

Which one takes longer?

void pushAll (int k){ void pushAdd(int k) {
for (int i=0; i<= 100*k; i++) for(inti=0;i<=k;i++)
{ for (int j=0; j<= k; j++)
, , list.add(i+j);
list.add(i); }
} }
} }

100K add operations K? add operations

Which grows faster?

f(k)=100K f(k)=k?

f(0) = 0 f(0)=0

f(1)=100 f(1) = 1
f(100) = 104 f(100)=104

f(1000)=10° f(1000)=10°

Growth is more
important than actual
running time!

Growth Rate of Running
Time
* hardware/ software environment
—affects by a constant factor

—does not alter the growth rate

» growth rate is an intrinsic property
of algorithm

Comparing Two Algorithms

TO SOFIZ 1 mi”ion insertion sort vs merge sort

items: 4 5000

£ 7000

-insertion sort (n2/4) | §

takes 70 hours G
-merge sort(n log n) | Fiw|

takes 40 seconds o s 100 150 200

number of elements

insertion sort == merge sort

Growth rate is not affected by
constant or lower order terms!

1102n+10°
1105n2 + 108n

1E+26

1E+24 -
1E+22 -
1E+20 -
1E+18 -

1E+16
s 1E+14
~ lE+12
1E+10
1E+8
1E+6
1E+4
1E+2
1E+0

- - -Quadratic
— Quadratic
- - -Linear
— Linear

1E+0 1E+2

1E+4

n

1E+6

1E+8

1E+10

Asymptotic Notation
Big-Oh

We say f(n) is O(g(n)) if f(n) < cg(n)
for some c and n>ny)!

E.g. 2n+10 is O(n), how?

10,000

1,000 — 2n+10

100

10

1

1 10 100 1,000

Big-Oh notation allows us
to ignore constant factors
and lower order terms!

Look for simplest
terms for expressing

Big-Oh!

Big-Oh Examples

« 7n-2 is O(n)

need c > 0 and ny = 1 such that 7n-2 < cen for n = n,
this is true forc =7 and ny = 1

e 3n3 + 20n2 + 5 is O(n3)
need ¢ > 0 and ny = 1 such that 3n3 + 20n? + 5 < cen3 forn = n,
this is true forc = 4 and ny, = 21

* 3logn + 5is O(log n)
need ¢ > 0 and ny = 1 such that 3 log n + 5 < celog n for n = n,
this is true forc = 8 and ny = 2

Not Big-Oh Example

dthe function n?2is "
oion

dn? =< cn 00 gy

dnot possible 00+

n"2
---100n
---10n
—n

10 ==

1

1

10

n

100

1,000

Big-Oh and Growth Rate

* gives an upper bound

* f(n)is O(g(n)) tells f(n) does not grow faster
than g(n)

» Can be used to compare algorithms

Focus on the main factor
that determines the
growth rate!

Running time grows
proportional to a
"specific” function of n
within a constant factor!

The Seven Important
Functions

Some Important Functions

Constant = 1
Logarithmic = log n
Linear = n

N-Log-N = n log n
Quadratic = n?
Cubic = n3

Exponential = 2"

Constant = 1

gn) =1

Logarithmic = log n

g(n)=1Ign

Linear = n

g(n) =n

N-Log-N = n log n

g(n) =nlgn

Quadratic = n?

4500
4000
— N2
3500 g (n) — n
3000
2500
2000
1500

1000

0 10 20 30 40

100000

250000

200000

150000

100000

50000

Cubic = n3

g(n) = n3

50

60

Exponential = 2"

Growth rate on Log Scale

1.E+44 - /
1.LE+40 A e

1.E+36

1.E+32 -

1.E+28 /I/.
1.E+24]

1.E+20

1.LE+16 - =
1.E+12 j/‘/‘
1.E+08 |

1.E+04

1LE+00 B —

SRR\ ASR IR\ SRR SEER AR\ RN P\ RO N I\ N

@

@@@@@@@@@@@@@@@x

—o— Exponential
—o— Cubic

—#— Quadratic
—— N-Log-N
—&— Linear

—4a— Logarithmic

—o— Constant

Asymptotic Analysis

1. measure running
time in terms of input
2. calculate Big-Oh
of the function

Example

 worst case running time of arrayMax
—f(n) = 6n+1

* Big-Oh of f(n) if n, i.e.
— 6n+1 is O(n)

« constant factors can be ignored while
counting primitives itself

Rules of thumb

Polynomial Runtime

» Drop lower order terms
* Drop constants

* f(n) = aink+a,_;nk1...+a,
—f(n) is O(nk)

Loops

cost = (#iterations)x(#max cost of one iteration)

int sum (int A[], int n){
int total=0;
for (int i=0; i<= n; i++)

{ O(n)

total=total+A[i];
]

return total;

}

Nested Loops

cost = (#iterations)x(#max cost of one iteration)

int sum (int A[][], int n){ N Iterations
int total=0;
for (int i=0; i<= n; i++)
{
for (int j=0; i<=n; j++) O(nZ)

total=total+A[i][j];
]

return total;

}

Sequential Statements

cost = (#cost of first)+(#cost of second)

}

int sum (int A[], int B[], int n){

int totalA=0; int totalB=0;
for (inti=0; i<= n; i++)
total A=total A+A[i];
}
for (int j=0; i<= n; j++){
totalB=totalB+B[j];
]

return totalA+totalB;

cost of most costly
step matters, 1.e.,

O(n)

if/else

cost = max(cost of first, cost of second)

void sum (int A[], int n){
int total=0;
for (int i=0; i<= n; i++)

{ *
i (i%2==0) O(ﬂ m ax)
//first action

else

// second action

Line between efficient
and inefficient?

