
Lecture 5
Algorithm Analysis

Slides modified from: © 2010 Goodrich, Tamassia

Which data structure is
good for the given

problem?

V
inegar

Algorithm

Each data structure
enables certain

algorithms!

How to characterize
an algorithm?

Some criteria
1.  Correctness

2.  Time efficient
3.   Memory efficient
4.  Coding efficient

How to measure the
time efficiency of an

algorithm?

Empirical: Run and Record
•  Implement the algorithm
•  vary the input size
•  use function like clock()

to record
•  plot input size vs time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

Ti
m

e
(m

s)

Limitations
•  need to implement
•  need time to run for all inputs
•  same hardware and software

environment required

Theoretical Analysis
• only needs high level

description
•  platform independent
• no implementation required

Pseudocode!
•  High-level description of an algorithm
•  More structured than English prose
•  Less detailed than a program
•  Preferred notation for describing

algorithms
•  Hides program design issues

Algorithm arrayMax(A, n)
 Input: array A of n integers
 Output: maximum element of A

 currentMax ← A[0]
 for i ← 1 to n - 1 do
 if A[i] > currentMax then
 currentMax ← A[i]
 return currentMax

 Example: find max element of an array

if condition then
 true-actions

else
 false-actions

while condition do
 actions

repeat

 action
until condition

Primitive operations
•  Basic computations, e.g. assignment,

evaluating expression, array indexing

•  call function /return from a function

Main Assumptions
•  sequential execution
•  primitive operations take fairly similar time

to execute
•  [RAM MODEL] accessing elements takes

constant time

Random Access Machine

q  A CPU
q  Unbounded memory
q Unit access time 0

1
2

counting number of
primitive operations

Algorithm arrayMax(A, n) # operations
 currentMax ← A[0] 2
 for i ← 1 to n - 1 do 2n+2
 if A[i] > currentMax then 2(n - 1)
 currentMax ← A[i] 0 to 2(n - 1)
 return currentMax 1

worst case = 6n+1 best case = 4n+3

Worst case

T (n) = 6n+1

Best case

T(n) = 4n+3

What is the average case?

0

20

40

60

80

100

120

1000 2000 3000 4000

Ru
nn

in
g

Ti
m

e

Input Size

best case
average case
worst case

We will characterize
running time in terms

of worst case!

What is the worst
case running time of

insertion sort?

Insertion Sort
Insert elements at right

place one by one!

5 2	 7 8 4 1 9

Insertion Sort
1.  for j=2 to n
2.  key = A[j];
3.  //Insert A[j] into sorted sequence A[1…j-1]
4.  i=j-1
5.  while i > 0 and A[i] > key
6.  A[i+1]=A[i]
7.  i=i-1;
8.  A[i+1] = key;

Which one takes longer?

void pushAll (int k){

 for (int i=0; i<= 100*k; i++)

 {

 list.add(i);

 }

 }

void pushAdd(int k) {
 for (int i=0; i<= k; i++){
 for (int j=0; j<= k; j++){
 list.add(i+j);
 }
 }

}

100K add operations K2 add operations

Which grows faster?
f(k)=100K f(k)=k2

f(0) = 0 f(0)=0

f(1)=100 f(1) = 1

f(100) = 104 f(100)=104

f(1000)=105 f(1000)=106

Growth is more
important than actual

running time!

Growth Rate of Running
Time

•  hardware/ software environment
– affects by a constant factor
– does not alter the growth rate

•  growth rate is an intrinsic property
of algorithm

Comparing Two Algorithms

To sort 1 million
items:
-insertion sort (n2/4)
takes 70 hours
-merge sort(n log n)
takes 40 seconds

Growth rate is not affected by
constant or lower order terms!

q 102n+105

q 105n2 + 108n

1E+0
1E+2
1E+4
1E+6
1E+8
1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n
)

Quadratic
Quadratic
Linear
Linear

Asymptotic Notation

Big-Oh

We say f(n) is O(g(n)) if f(n) ≤ cg(n)
for some c and n>n0!

E.g. 2n+10 is O(n), how?

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

Big-Oh notation allows us
to ignore constant factors

and lower order terms!

Look for simplest
terms for expressing

Big-Oh!

Big-Oh Examples
•  7n-2 is O(n)

•  3n3 + 20n2 + 5 is O(n3)

•  3 log n + 5 is O(log n)

need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0
this is true for c = 7 and n0 = 1

need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥ n0
this is true for c = 4 and n0 = 21

need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n0
this is true for c = 8 and n0 = 2

Not Big-Oh Example
q the function n2 is

not O(n)
q n2 ≤ cn
q not possible

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2
100n
10n
n

Big-Oh and Growth Rate

•  gives an upper bound
•  f(n) is O(g(n)) tells f(n) does not grow faster

than g(n)
•  Can be used to compare algorithms

Focus on the main factor
that determines the

growth rate!

Running time grows
proportional to a

“specific” function of n
within a constant factor!

The Seven Important
Functions

Some Important Functions
•  Constant ≈ 1
•  Logarithmic ≈ log n
•  Linear ≈ n
•  N-Log-N ≈ n log n
•  Quadratic ≈ n2

•  Cubic ≈ n3

•  Exponential ≈ 2n

Constant ≈ 1

g(n) = 1

Logarithmic ≈ log n

g(n) = lg n

Linear ≈ n

g(n) = n

N-Log-N ≈ n log n

g(n) = n lg n

Quadratic ≈ n2

g(n) = n2

Cubic ≈ n3

g(n) = n3

Exponential ≈ 2n

g(n) = 2n

Growth rate on Log Scale

✐

✐

“main” — 2011/1/13 — 9:10 — page 161 — #183
✐

✐

✐

✐

✐

✐

4.1. The Seven Functions Used in This Book 161

4.1.8 Comparing Growth Rates

To sum up, Table 4.1 shows each of the seven common functions used in algorithm
analysis in order.

constant logarithm linear n-log-n quadratic cubic exponential
1 logn n n logn n2 n3 an

Table 4.1: Classes of functions. Here we assume that a > 1 is a constant.

Ideally, we would like data structure operations to run in times proportional
to the constant or logarithm function, and we would like our algorithms to run in
linear or n-log-n time. Algorithms with quadratic or cubic running times are less
practical, but algorithms with exponential running times are infeasible for all but
the smallest sized inputs. Plots of the seven functions are shown in Figure 4.2.

1.E+00
1.E+04
1.E+08
1.E+12
1.E+16
1.E+20
1.E+24
1.E+28
1.E+32
1.E+36
1.E+40
1.E+44

1.E
+00

1.E
+01

1.E
+02

1.E
+03

1.E
+04

1.E
+05

1.E
+06

1.E
+07

1.E
+08

1.E
+09

1.E
+10

1.E
+11

1.E
+12

1.E
+13

1.E
+14

1.E
+15

Exponential

Cubic

Quadratic

N-Log-N

Linear

Logarithmic

Constant

Figure 4.2: Growth rates for the seven fundamental functions used in algorithm
analysis. We use base a = 2 for the exponential function. The functions are plotted
in a log-log chart, to compare the growth rates primarily as slopes. Even so, the
exponential function grows too fast to display all its values on the chart. Also, we
use the scientific notation for numbers, where aE+b denotes a10b.

The Ceiling and Floor Functions

One additional comment concerning the functions above is in order. The value
of a logarithm is typically not an integer, yet the running time of an algorithm is
usually expressed by means of an integer quantity, such as the number of operations
performed. Thus, the analysis of an algorithm may sometimes involve the use of
the floor function and ceiling function, which are defined respectively as follows:

• ⌊x⌋ = the largest integer less than or equal to x
• ⌈x⌉ = the smallest integer greater than or equal to x

Asymptotic Analysis

1. measure running
time in terms of input
2. calculate Big-Oh

of the function

Example
•  worst case running time of arrayMax
–  f(n) = 6n+1

•  Big-Oh of f(n) if n, i.e.
– 6n+1 is O(n)

•  constant factors can be ignored while
counting primitives itself

Rules of thumb

Polynomial Runtime
•  Drop lower order terms
•  Drop constants
•  f(n) = aknk+ak-1nk-1…+a0

– f(n) is O(nk)

Loops
cost = (#iterations)×(#max cost of one iteration)

int sum (int A[], int n){
 int total=0;
 for (int i=0; i<= n; i++)
 {
 total=total+A[i];
 }
 return total;

 }

O(n)

Nested Loops
cost = (#iterations)×(#max cost of one iteration)

O(n2)

n iterations int sum (int A[][], int n){
 int total=0;
 for (int i=0; i<= n; i++)
 {
 for (int j=0; i<= n; j++)
 total=total+A[i][j];
 }
 return total;

 }

Sequential Statements
cost = (#cost of first)+(#cost of second)

int sum (int A[], int B[], int n){
 int totalA=0; int totalB=0;
 for (int i=0; i<= n; i++){
 totalA=totalA+A[i];
 }
 for (int j=0; i<= n; j++){
 totalB=totalB+B[j];
 }
 return totalA+totalB;

 }

cost of most costly
step matters, i.e.,

O(n)

if/else
cost = max(cost of first, cost of second)

void sum (int A[], int n){
 int total=0;
 for (int i=0; i<= n; i++)
 {
 if (i%2==0)
 //first action
 else
 // second action
 }

 }

O(n*max)

Line between efficient
and inefficient?

