
Lecture 8
Queues and Deques

Slides	modified	from	©	2010	Goodrich,	Tamassia	

Queues
First-in First-out

Main Operations
1.  enqueue (object) at the rear

2.  dequeue (object) from front

rear front

Auxiliary Operations
• object front():
•  integer size():
• boolean empty():

Queue Interface in C++
template <typename E>
class Queue {
public:
 int size() const;
 bool empty() const;
 const E& front() const;
 void enqueue (const E& e);
 void dequeue()

};

Operation Output Queue
enqueue(5) – (5)
enqueue(3) – (5, 3)
enqueue(4) – (5, 3, 4)
dequeue() – (3, 4)
enqueue(7) – (3, 4, 7)
dequeue() – (4, 7)
front() 4 (4, 7)
size() 2 (4, 7)
dequeue() – (7)
dequeue() – ()
empty() true ()

Applications
•  Direct applications
– shared resources (e.g., printer)
– multi-threaded programming

•  Indirect applications
– auxiliary data structure for algorithms

Queue
Implementation

Array-based Implementation

Q
0 1 2 r f

normal configuration

f index of the front element
r index immediately past the rear

element
n number of items in the queue

Wrapped-around
Configuration

 Q
0 1 2 f r

f index of the front element
r index immediately past the rear

element
n number of items in the queue

enqueue()
Algorithm enqueue(e)
 Q[r] ← e
 r ← (r + 1) mod N
 n ← n + 1

Q
0 1 2 f r

Q
0 1 2 r f

dequeue()
Algorithm dequeue()
 f ← (f + 1) mod N
 n ← n - 1

Q
0 1 2 r f

Q
0 1 2 f r

size() and empty()
Algorithm size()
 return n

Algorithm empty()
 return (n == 0)

Q
0 1 2 r f

Q
0 1 2 f r

Array-based Queue
Limitation
-fixed size!

Linked list
Implementation of

Queues

Circular Linked List
for Queue

✐

✐

“main” — 2011/1/13 — 9:10 — page 214 — #236
✐

✐

✐

✐

✐

✐

214 Chapter 5. Stacks, Queues, and Deques

as the front of the queue and the front of the circular list as the rear of the queue?)

Also recall that CircleList supports the following modifier functions. The func-
tion add inserts a new node just after the cursor, the function remove removes the
node immediately following the cursor, and the function advance moves the cursor
forward to the next node of the circular list.

In order to implement the queue operation enqueue, we first invoke the function
add, which inserts a new element just after the cursor, that is, just after the rear
of the queue. We then invoke advance, which advances the cursor to this new
element, thus making the new node the rear of the queue. The process is illustrated
in Figure 5.5.

LAX MSP ATL

(front) (rear)
cursor

(a)

LAX MSP ATL BOS

(front) (rear)
cursor

(b)

LAX MSP ATL BOS

(front) (rear)
cursor

(c)

Figure 5.5: Enqueueing “BOS” into a queue represented as a circularly linked list:
(a) before the operation; (b) after adding the new node; (c) after advancing the
cursor.

In order to implement the queue operation dequeue, we invoke the function
remove, thus removing the node just after the cursor, that is, the front of the queue.
The process is illustrated in Figure 5.6.

The class structure for the resulting class, called LinkedQueue, is shown in
Code Fragment 5.18. To avoid the syntactic messiness inherent in C++ templated
classes, we have chosen not to implement a fully generic templated class. Instead,
we have opted to define a type for the queue’s elements, called Elem. In this ex-
ample, we define Elem to be of type string. The queue is stored in the circular list

Queue
front
back

Circular List
front è
rear è

✐

✐

“main” — 2011/1/13 — 9:10 — page 214 — #236
✐

✐

✐

✐

✐

✐

214 Chapter 5. Stacks, Queues, and Deques

as the front of the queue and the front of the circular list as the rear of the queue?)

Also recall that CircleList supports the following modifier functions. The func-
tion add inserts a new node just after the cursor, the function remove removes the
node immediately following the cursor, and the function advance moves the cursor
forward to the next node of the circular list.

In order to implement the queue operation enqueue, we first invoke the function
add, which inserts a new element just after the cursor, that is, just after the rear
of the queue. We then invoke advance, which advances the cursor to this new
element, thus making the new node the rear of the queue. The process is illustrated
in Figure 5.5.

LAX MSP ATL

(front) (rear)
cursor

(a)

LAX MSP ATL BOS

(front) (rear)
cursor

(b)

LAX MSP ATL BOS

(front) (rear)
cursor

(c)

Figure 5.5: Enqueueing “BOS” into a queue represented as a circularly linked list:
(a) before the operation; (b) after adding the new node; (c) after advancing the
cursor.

In order to implement the queue operation dequeue, we invoke the function
remove, thus removing the node just after the cursor, that is, the front of the queue.
The process is illustrated in Figure 5.6.

The class structure for the resulting class, called LinkedQueue, is shown in
Code Fragment 5.18. To avoid the syntactic messiness inherent in C++ templated
classes, we have chosen not to implement a fully generic templated class. Instead,
we have opted to define a type for the queue’s elements, called Elem. In this ex-
ample, we define Elem to be of type string. The queue is stored in the circular list

Enqueue

Dequeue
✐

✐

“main” — 2011/1/13 — 9:10 — page 215 — #237
✐

✐

✐

✐

✐

✐

5.2. Queues 215

LAX MSP ATL BOS

(front) (rear)
cursor

(a)

MSP ATL BOS

(front) (rear)
cursor

LAX

(b)

Figure 5.6: Dequeueing an element (in this case “LAX”) from the front queue rep-
resented as a circularly linked list: (a) before the operation; (b) after removing the
node immediately following the cursor.

data structure C. In order to support the size function (which CircleList does not
provide), we also maintain the queue size in the member n.

typedef string Elem; // queue element type
class LinkedQueue { // queue as doubly linked list
public:

LinkedQueue(); // constructor
int size() const; // number of items in the queue
bool empty() const; // is the queue empty?
const Elem& front() const throw(QueueEmpty); // the front element
void enqueue(const Elem& e); // enqueue element at rear
void dequeue() throw(QueueEmpty); // dequeue element at front

private: // member data
CircleList C; // circular list of elements
int n; // number of elements

};

Code Fragment 5.18: The class LinkedQueue, an implementation of a queue based
on a circularly linked list.

In Code Fragment 5.19, we present the implementations of the constructor and
the basic accessor functions, size, empty, and front. Our constructor creates the
initial queue and initializes n to zero. We do not provide an explicit destructor,
relying instead on the destructor provided by CircleList. Observe that the func-
tion front throws an exception if an attempt is made to access the first element of
an empty queue. Otherwise, it returns the element referenced by the front of the
circular list, which, by our convention, is also the front element of the queue.

Round Robin Schedulers
Repeat 1-3

1.  e = Q.front(); Q.dequeue()
2.  Service element e
3.  Q.enqueue(e)

Shared
Service

Queue

Enqueue Dequeue

Double-Ended Queue :
Deque

back front

Fundamental operations
– InsertFirst(e)
– InsertLast(e)
– RemoveFirst()
– RemoveLast()
– First()
– Last()

Deque implementations

•  Doubly linked list

Tail

A B C

•  Singly linked list

Maximum of all
subarrays of size k
•  Input: [9 0 8 1 5 7 19 21 3 64 18]
•  Output:[9 8 8 19 21 21 64 64]

D = (1,2,3,4,5,6,7,8)

Q = ()

Change D to

D = (1,2,3,5,4,6,7,8)

