
Review:
Containers,

Positions, and
Iterators

What is a container?

Containers
Objects that can hold

other objects/variables
and more…

What is a position?

Position: stores the node
reference, but privately!

class Position{
 public:
 E& element();
 private:
 Node* v;
 };

Node Structure

✐

✐

“main” — 2011/1/13 — 9:10 — page 242 — #264
✐

✐

✐

✐

✐

✐

242 Chapter 6. List and Iterator ADTs

be implemented using the functions of the list ADT, with the positions being de-
termined by a natural ordering of the suits. Likewise, a simple text editor embeds
the notion of positional insertion and removal, since such editors typically perform
all updates relative to a cursor, which represents the current position in the list of
characters of text being edited.

6.2.3 Doubly Linked List Implementation

There are a number of different ways to implement our list ADT in C++. Probably
the most natural and efficient way is to use a doubly linked list, similar to the one
we introduced in Section 3.3. Recall that our doubly linked list structure is based
on two sentinel nodes, called the header and trailer. These are created when the
list is first constructed. The other elements of the list are inserted between these
sentinels.

Following our usual practice, in order to keep the code simple, we sacrifice gen-
erality by forgoing the use of class templates. Instead, we provide a type definition
Elem, which is the base element type of the list. We leave the details of producing
a fully generic templated class as an exercise (R-6.11).

Before defining the class, which we call NodeList, we define two important
structures. The first represents a node of the list and the other represents an iterator
for the list. Both of these objects are defined as nested classes within NodeList.
Since users of the class access nodes exclusively through iterators, the node is de-
clared a private member of NodeList, and the iterator is a public member.

The node object is called Node and is presented in Code Fragment 6.6. This
is a simple C++ structure, which has only (public) data members, consisting of the
node’s element, a link to the previous node of the list, and a link to the next node
of the list. Since it is declared to be private to NodeList, its members are accessible
only within NodeList.

struct Node { // a node of the list
Elem elem; // element value
Node* prev; // previous in list
Node* next; // next in list

};

Code Fragment 6.6: The declaration of a node of a doubly linked list.

Our iterator object is called Iterator. To users of class NodeList, it can be ac-
cessed by the qualified type name NodeList::Iterator. Its definition, which is pre-
sented in Code Fragment 6.7, is placed in the public part of NodeList. An element
associated with an iterator can be accessed by overloading the dereferencing oper-
ator (“*”). In order to make it possible to compare iterator objects, we overload the

Overload operator * to
return element!

class Position{
 public:
 E& operator*();
 private:
 Node* v;
 };

E& Position::operator*{

 return v−>elem;

};

Position p;

p = S.top();

E& elm = *p;

What is an Iterator?

Position& Position::operator++{

 v=v−>next;

 return *this;

};

Overload -- and ++
for Position

Iterator Class
class Iterator {
public:

 Elem& operator*();
 bool operator==(const Iterator& p) const;
 bool operator!=(const Iterator& p) const;
 Iterator& operator++();
 Iterator& operator−−();

 friend class NodeList;
private:

 Node* v; Iterator(Node* u);
};

List Container

✐

✐

“main” — 2011/1/13 — 9:10 — page 244 — #266
✐

✐

✐

✐

✐

✐

244 Chapter 6. List and Iterator ADTs

To keep the code simple, we have not implemented any error checking. We
assume that the functions of Code Fragment 6.8 are defined outside the class body.
Because of this, when referring to the nested class Iterator, we need to apply the
scope resolution operator, as in NodeList::Iterator, so the compiler knows that we
are referring to the iterator type associated with NodeList. Observe that the incre-
ment and decrement operators not only update the position, but they also return a
reference to the updated position. This makes it possible to use the result of the
increment operation, as in “q = ++p.”

Having defined the supporting structures Node and Iterator, let us now present
the declaration of class NodeList, which is given in Code Fragment 6.9. The class
declaration begins by inserting the Node and Iterator definitions from Code Frag-
ments 6.6 and 6.7. This is followed by the public members, that consist of a simple
default constructor and the members of the list ADT. We have omitted the standard
housekeeping functions from our class definition. These include the class destruc-
tor, a copy constructor, and an assignment operator. The definition of the destructor
is important, since this class allocates memory, so it is necessary to delete this
memory when an object of this type is destroyed. We leave the implementation of
these housekeeping functions as an exercise (R-6.12).

typedef int Elem; // list base element type
class NodeList { // node-based list
private:

// insert Node declaration here. . .
public:

// insert Iterator declaration here. . .
public:

NodeList(); // default constructor
int size() const; // list size
bool empty() const; // is the list empty?
Iterator begin() const; // beginning position
Iterator end() const; // (just beyond) last position
void insertFront(const Elem& e); // insert at front
void insertBack(const Elem& e); // insert at rear
void insert(const Iterator& p, const Elem& e); // insert e before p
void eraseFront(); // remove first
void eraseBack(); // remove last
void erase(const Iterator& p); // remove p
// housekeeping functions omitted. . .

private: // data members
int n; // number of items
Node* header; // head-of-list sentinel
Node* trailer; // tail-of-list sentinel

};
Code Fragment 6.9: Class NodeList realizing the C++-based list ADT.

++ Overloading

Iterator& Iterator::operator++{

 v = v->next;

 return *this;

};

Erase with Iterator

✐

✐

“main” — 2011/1/13 — 9:10 — page 246 — #268
✐

✐

✐

✐

✐

✐

246 Chapter 6. List and Iterator ADTs

// insert e before p
void NodeList::insert(const NodeList::Iterator& p, const Elem& e) {

Node* w = p.v; // p’s node
Node* u = w−>prev; // p’s predecessor
Node* v = new Node; // new node to insert
v−>elem = e;
v−>next = w; w−>prev = v; // link in v before w
v−>prev = u; u−>next = v; // link in v after u
n++;

}

void NodeList::insertFront(const Elem& e) // insert at front
{ insert(begin(), e); }

void NodeList::insertBack(const Elem& e) // insert at rear
{ insert(end(), e); }

Code Fragment 6.11: Implementations of the insertion functions of class NodeList.

The function insertFront invokes insert on the beginning of the list, and the
function insertBack invokes insert on the list’s trailer.

Finally, in Code Fragment 6.12 we present the implementation of the erase
function, which removes a node from the list. Again, our approach follows directly
from the method described in Section 3.3 for removal of a node from a doubly
linked list. Let v be a pointer to the node to be deleted, and let w be its successor
and u be its predecessor. We unlink v by linking u and w to each other. Once v has
been unlinked from the list, we need to return its allocated storage to the system in
order to avoid any memory leaks. Finally, we decrement the number of elements in
the list.

void NodeList::erase(const Iterator& p) { // remove p
Node* v = p.v; // node to remove
Node* w = v−>next; // successor
Node* u = v−>prev; // predecessor
u−>next = w; w−>prev = u; // unlink p
delete v; // delete this node
n−−; // one fewer element

}

void NodeList::eraseFront() // remove first
{ erase(begin()); }

void NodeList::eraseBack() // remove last
{ erase(−−end()); }

Code Fragment 6.12: Implementations of the function erase of class NodeList.

The “Position” of a Node
class Position <E>{

 public:
 E& operator*();
 Position parent () const;
 PositionList children () const;
 bool isRoot() const;
 bool isExternal() const;
 private:
 …

}

