Week 10 Background Modeling

Ref: Stauffer, C. & Grimson, W. E. L. (1999). Adaptive Background Mixture Models for Real-Time Tracking.. CVPR (p./pp. 2246-2252), : IEEE Computer Society. ISBN: 0-7695-0149-4

Motion

- 1. Motion of blocks Motion Vectors
- 2. Motion of Objects Object Tracking
- 3. Motion Regions Background Modeling

Object: regions of the image that are semantically important

Moving Object Detection in Fixed Camera Videos

Idea: Model the Background!

Task: differentiate the moving objects from the background!

The pixel is Foreground or Background?

Idea: -single value modeling of background

Challenge: Acquisition noise

Idea: Single Gaussian Model

- If $|X_t \mu| < 2.5 * \sigma$ - background,
- Else

 foreground

Challenge: Illumination Variation

Idea: adapt the parameters!

$$\mu_t = (1 - \rho)\mu_{t-1} + \rho X_t$$
$$\sigma_t^2 = (1 - \rho)\sigma_{t-1}^2 + \rho (X_t - \mu_t)^T (X_t - \mu_t)$$

where

$$\rho = \alpha \eta(X_t | \mu_k, \sigma_k)$$

Challenge: Clutter

Idea: Use multiple Gaussians

Challenge: new objects in the scene!

Idea: more Gaussians, store foreground as well!

Persistence

- Modeled as prior weight w
- If a new pixel does not match to any exiting Gaussians, least persistent Gaussian is replaced with a new Gaussian with:

$$\mu_t = P_t$$

And standard variation

 σ_t = a large value

Background Selection

- A background Gaussian will have
 - More persistence high w
 - Less variation low σ_t
 - Sort Gaussians wrt w/σ_t

$$\arg\min_{k}\left(\sum_{i=1}^{k} w_{i} > T\right)$$

Adaptive Background Model

Outline of Object Detection

CLEANED UP

Connecting the Dots

- Dilation/Erosion
- Contour drawing
- Bounding boxes

Revisiting Challenges

- Acquisition noise
- Illumination variation
- Clutter
- New object introduced into background
- Object may not move continuously

All models are wrong but some are useful. -George E. P. Box