
Week 12
Data Compression

Reference	and	Slide	Source:	ChengXiang	Zhai	and	Sean	Massung.	2016.	Text	Data	Management	and	Analysis:	a	Practical	Introduction	
to	Information	Retrieval	and	Text	Mining.	Association	for	Computing	Machinery	and	Morgan	&	Claypool,	New	York,	NY,	USA.				

What is Multimedia?
Multiple Carriers of

information

S3

S2

S1
1	2	4	2	6	
5	4	2	6	7	
8	4	2	7	9	
2	6	2	5	9	

Representation Storage

Analysis

Compression Integration

Output

Already Discussed Lossless
Techniques

• Predictive coding
• Run length coding
• Huffman coding

Already Discussed Lossy
Techniques

Quantization

Quantization is at the core of
all lossy quantization

techniques!

E.g. JPEG, MPEG, MP3, DPCM

How to Compress
Text?

The computer science and engineering department offers
many computer related courses. Although there is science

term in the name, no science courses are offered in the
department.

Differential Coding?
The computer science and engineering department offers
many computer related courses. Although there is science

term in the name, no science courses are offered in the
department.

Not a good idea!

Run Length Coding?
The computer science and engineering department offers
many computer related courses. Although there is science

term in the name, no science courses are offered in the
department.

Not a good idea!

Huffman Coding?
The computer science and engineering department offers
many computer related courses. Although there is science

term in the name, no science courses are offered in the
department.

Huffman Coding
•  Removes the source information

•  Frequent symbols assigned shorter
codes

•  Prefix coding

Can we refer to a
dictionary entry of

the word?

Dictionary-based
Compression

•  Do not encode single symbols as variable-
length bit strings

•  Encode variable-length string of symbols as
single token

•  The tokens form an index into a phrase
dictionary

•  If tokens are smaller than phrases, we have
compression

Lempel-Ziv-Welsh
(LZW) Coding

•  A dictionary-based coding algorithm
•  Build the dictionary dynamically
•  Initially the dictionary contains only

character codes
•  The remaining entries in the dictionary are

then build dynamically

Lempel–Ziv–Welch (LZW)
Compression

set w = NIL
 loop
 read a character k

 if wk exists in the dictionary

 w = wk

 else

 output the code for w

 add wk to the dictionary

 w=k

 endloop

Ref:	http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf	

Example

Ref:	http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf	

Example of LZW: Compression
Input String: ^WED^WE^WEE^WEB^WET

TEOFT

^WET266260T^WE

E^W

W^

B^265B^B

WEB264257BWE

EW

E^W263261WE^

^E

^WEE262260E^WE

E^W

W^

E^261E^E

^WE260256E^W

W^

D^259D^D

ED258EDE

WE257WEW

^W256^W^

^NIL

SymbolIndexOutputkw set w = NIL
loop

read a character k
if wk exists in the dictionary

w = wk
else

output the code for w
add wk to the dictionary
w = k

endloop

LZW Algorithm
LZW Decompression:

read fixed length token k (code or char)
output k
w = k
loop

read a fixed length token k
entry = dictionary entry for k
output entry
add w + first char of entry to

the dictionary
w = entry

endloop

The nice thing is that the decom pressor builds its own d ictionary on its
side, that matches exactly the com pressor's, so that only the codes need
to be sent.

Example of LZW
Input String (to decode): ^WED<256>E<260><261><257>B<260>T

^WET266TT^WE

B^265^WE<260>B

WEB264BBWE

E^W263WE<257>E^

^WEE262E^<261>^WE

E^261^WE<260>E

^WE260EE^W

D^259^W<256>D

ED258DDE

WE257EEW

^W256WW^

^^

SymbolIndexOutputkw read a fixed length token k
(code or char)

output k
w = k
loop

read a fixed length token k
(code or char)

entry = dictionary entry for k
output entry
add w + first char of entry to

the dictionary
w = entry

endloop

LZW Decompression
read fixed length token k (code or char)

output k
w=k
loop

 read a fixed length token k

 entry = dictionary entry for k

 output entry
 add w + first char of entry to the dictionary

 w = entry

endloop

Ref:	http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf	

Example

Ref:	http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf	

Example of LZW: Compression
Input String: ^WED^WE^WEE^WEB^WET

TEOFT

^WET266260T^WE

E^W

W^

B^265B^B

WEB264257BWE

EW

E^W263261WE^

^E

^WEE262260E^WE

E^W

W^

E^261E^E

^WE260256E^W

W^

D^259D^D

ED258EDE

WE257WEW

^W256^W^

^NIL

SymbolIndexOutputkw set w = NIL
loop

read a character k
if wk exists in the dictionary

w = wk
else

output the code for w
add wk to the dictionary
w = k

endloop

LZW Algorithm
LZW Decompression:

read fixed length token k (code or char)
output k
w = k
loop

read a fixed length token k
entry = dictionary entry for k
output entry
add w + first char of entry to

the dictionary
w = entry

endloop

The nice thing is that the decom pressor builds its own d ictionary on its
side, that matches exactly the com pressor's, so that only the codes need
to be sent.

Example of LZW
Input String (to decode): ^WED<256>E<260><261><257>B<260>T

^WET266TT^WE

B^265^WE<260>B

WEB264BBWE

E^W263WE<257>E^

^WEE262E^<261>^WE

E^261^WE<260>E

^WE260EE^W

D^259^W<256>D

ED258DDE

WE257EEW

^W256WW^

^^

SymbolIndexOutputkw read a fixed length token k
(code or char)

output k
w = k
loop

read a fixed length token k
(code or char)

entry = dictionary entry for k
output entry
add w + first char of entry to

the dictionary
w = entry

endloop

Where is Compression?

•  Input String: ^WED^WE^WEE^WEB^WET

–  19 * 8 bits = 152 bits

•  Encoded: ^WED<256>E<260><261><257>B<260>T

–  12*9 bits = 108 bits (7 symbols and 5 codes, each of

9 bits)

•  Why 9 bits?

Ref:	http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf	

Ref:	http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf	

LZW Algorithm - Discussion

9 bits

0

9 bits

1

<- ASCII characters

(0 to 255)

<- Codes

(256 to 512)

! W here is the compression?
! Original String to decode : ^W ED^W E^W EE^W EB^W ET
! Decoded String : ^W ED<256>E<260><261><257>B<260>T
! Plain ASCII coding of the string : 19 * 8 bits = 152 bits
! LZW coding of the string: 12*9 bits = 108 bits (7 symbols and 5

codes, each of 9 bits)
! W hy 9 bits?

! An ASCII character has a value ranging from 0 to 255
! All tokens have fixed length
! There has to be a distinction in representation between an

ASCII character and a Code (assigned to strings of length 2 or
more)

! Codes can only have values 256 and above

LZW Algorithm ñ Discussion (continued)
! With 9 bits we can only have a maximum of 256 codes for

strings of length 2 or above (with the first 256 entries for
ASCII characters)

" Original LZW uses dictionary with 4K entries, with the
length of each symbol/code being 12 bits

12 bits

0 <- ASCII characters

(0 to 255 entries)

<- Codes

(256 to 4096 entries)

00 0

100 0

111 1

" With 12 bits, we can have a maximum of 212 ñ 256 codes.

! Practical implementations of LZW algorithm follow the two

approaches:
! Flush the dictionary periodically

ñ no wasted codes
! Grow the length of the codes as the algorithm proceeds

- First start with a length of 9 bits for the codes.
- Once we run out of codes, increase the length to 10 bits. When we

run out of codes with 10 bits then we increase the code length to 11
bits and so on.

- more efficient.

Codes 256-5121

ASCII0

Codes 512-76701

Codes 256-51110

1

0

Codes 768-10231

ASCII0

1

1

1

1

0

0

0

0

Codes 512-76701

Codes 768-102311

Codes 1024-127900

Codes 1280-153510

Codes 1536-179101

Codes 256-51110

1

0

Codes 1792-20471

ASCII0Out of codes

Out of codes

Original LZW Uses 12-bit
Codes!

LZW Algorithm - Discussion

9 bits

0

9 bits

1

<- ASCII characters

(0 to 255)

<- Codes

(256 to 512)

! W here is the compression?
! Original String to decode : ^W ED^W E^W EE^W EB^W ET
! Decoded String : ^W ED<256>E<260><261><257>B<260>T
! Plain ASCII coding of the string : 19 * 8 bits = 152 bits
! LZW coding of the string: 12*9 bits = 108 bits (7 symbols and 5

codes, each of 9 bits)
! W hy 9 bits?

! An ASCII character has a value ranging from 0 to 255
! All tokens have fixed length
! There has to be a distinction in representation between an

ASCII character and a Code (assigned to strings of length 2 or
more)

! Codes can only have values 256 and above

LZW Algorithm ñ Discussion (continued)
! With 9 bits we can only have a maximum of 256 codes for

strings of length 2 or above (with the first 256 entries for
ASCII characters)

" Original LZW uses dictionary with 4K entries, with the
length of each symbol/code being 12 bits

12 bits

0 <- ASCII characters

(0 to 255 entries)

<- Codes

(256 to 4096 entries)

00 0

100 0

111 1

" With 12 bits, we can have a maximum of 212 ñ 256 codes.

! Practical implementations of LZW algorithm follow the two

approaches:
! Flush the dictionary periodically

ñ no wasted codes
! Grow the length of the codes as the algorithm proceeds

- First start with a length of 9 bits for the codes.
- Once we run out of codes, increase the length to 10 bits. When we

run out of codes with 10 bits then we increase the code length to 11
bits and so on.

- more efficient.

Codes 256-5121

ASCII0

Codes 512-76701

Codes 256-51110

1

0

Codes 768-10231

ASCII0

1

1

1

1

0

0

0

0

Codes 512-76701

Codes 768-102311

Codes 1024-127900

Codes 1280-153510

Codes 1536-179101

Codes 256-51110

1

0

Codes 1792-20471

ASCII0Out of codes

Out of codes

Ref:	http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf	

What if we run out of
codes?

•  Flush the dictionary periodically
•  Or Grow length of codes dynamically

