Week 12
Data Compression

Reference and Slide Source: ChengXiang Zhai and Sean Massung. 2016. Text Data Management and Analysis: a Practical Introduction
to Information Retrieval and Text Mining. Association for Computing Machinery and Morgan & Claypool, New York, NY, USA.

What is Multimedia?

Multiple Carriers of
information

Representation Compression

Storage

Analysis

Integration

Already Discussed Lossless
Techniques

* Predictive coding
* Run length coding
* Huffman coding

Already Discussed Lossy
Techniques

Quantization

Quantization is at the core of
all lossy quantization
techniques!

E.g. JPEG, MPEG, MP3, DPCM

How to Compress
Text?

The computer science and engineering department offers
many computer related courses. Although there is science
term in the name, no science courses are offered in the
department.

Differential Coding?

The computer science and engineering department offers
many computer related courses. Although there is science
term in the name, no science courses are offered in the
department.

Not a good idea!

Run Length Coding?

The computer science and engineering department offers
many computer related courses. Although there is science
term in the name, no science courses are offered in the
department.

Not a good idea!

Huffman Coding?

The computer science and engineering department offers
many computer related courses. Although there is science
term in the name, no science courses are offered in the
department.

Huffman Coding

« Removes the source information

* Frequent symbols assigned shorter
codes

* Prefix coding

Can we refer to a
dictionary entry of
the word?

Dictionary-basea
Compression

Do not encode single symbols as variable-
length bit strings

Encode variable-length string of symbols as
single token

The tokens form an index into a phrase
dictionary

If tokens are smaller than phrases, we have
compression

Lempel-Ziv-Welsh
(LZW) Coding

A dictionary-based coding algorithm
Build the dictionary dynamically

Initially the dictionary contains only
character codes

The remaining entries in the dictionary are
then build dynamically

Lempel-Ziv—-Welch (LZW)
Compression

set w = NIL

loop
read a character k

if wk exists in the dictionary
w = wk

else
output the code for w
add wk to the dictionary
w=k

endloop

Ref: http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf

Example

Input String: “"WED "WE "WEE"WEB"WET

w k Output | Index | Symbol
NIL -

- W - 256 W
W E " 257 WE
E D E 258 ED
D ~ D 259 D"
~ W

~W E 256 260 ~WE
E ~ E 261 E”
~ W

~W E

~WE E 260 262 ~WEE
E "

E” W 261 263 E*W
" E

WE B 257 264 WEB
B ~ B 265 B
~ W

~W E

~WE T 260 266 “WET
T EOF T

Ref: http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf

LZW Decompression

read fixed length token k (code or char)

output k

w=k

loop
read a fixed length token k
entry = dictionary entry for k

output entry
add w + first char of entry to the dictionary

w = entry

endloop

Ref: http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf

Input String (to decode):

Example

“WED<2565E<2605<2615<257>B<260>T

w k Output | Index | Symbol
g w w 256 W
w E E 257 WE
E D D 258 ED
D <256> "W 259 D"
"W E E 260 “WE
E <260> “WE 261 E"
“"WE 261> E” 262 “"WEE
E” <257> WE 263 E"W
WE B B 264 WEB
B <260» “WE 265 B"
“WE T T 266 “WET

Ref: http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf

read a fixed length token k
(code or char)
output k
w=k
loop
read a fixed length token k
(code or char)
entry = dictionary entry for k
output entry

add w + first char of entry to
the dictionary

w = entry
endloop

Where is Compression?

* Input String: AWEDAWEAWEEAWEBAWET
— 19 * 8 bits = 152 bits
e Encoded: AWED<256>E<260><261><257>B<260>T

— 12*9 bits = 108 bits (7 symbols and 5 codes, each of
9 bits)

« Why 9 bits?

Ref: http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf

O <- ASCII characters
-«— S BiTs > (0 to 255)
1 <- Codes

- 9 bits > (256 to 512)

Ref: http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf

Original LZW Uses 12-bit
Codes!

070700 <- ASCIT characters
- > (O to 255 entries)
12 bits
010i0i1.)
<- Codes
. ; (256 to 4096 entries)
1010101)

Ref: http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf

What if we run out of
codes?

* Flush the dictionary periodically
* Or Grow length of codes dynamically

