Week 14 Video Compression

Ref: Fundamentals of Multimedia

Last lecture review

- Prediction from the previous frame is called forward prediction
- Prediction from the next frame is called forward prediction
- P-frames: Predicted from previous p-frame or I-frame
- B-frame: bi-directionally predicted from the I or P frames
- B-frames are never used for prediction.

What is video?

A sequence of images displayed at a high frequency to give illusion of motion!

Observation 1: Everything we observed for images!

- Color redundancy
- Spatial redundancy
- Spectral redundancy

Transform Coding

T: Transform Q: Quantizer RLE: Run Length Encoding E: Entropy coder

Observation 2: Content of consecutive frames is mostly similar!

Temporal redundancy!

Video Coding Standards

- H.261
- H.263
- MPEG 1/2/4
- H.264

H.261

- The standard was designed for videophone, video conferencing.
- The video codec supports bit-rates of $p \ge 64$ kbps, where p ranges from 1 to 30 (Hence also known as $p \ge 64$).
- Require that the delay of the video encoder be less than 150 msec so that the video can be used for real-time bidirectional video conferencing.

Video Formats Supported by H.261

Video	Luminance	Chrominance	Bit-rate (Mbps)	H.261
format	image	image	(if 30 fps and	support
	resolution	resolution	uncompressed)	
QCIF	176 imes 144	88×72	9.1	required
CIF	352×288	176 imes144	36.5	optional

H.261 Frame Sequence

H.261 Frame Sequence

- Two types of image frames are defined: Intra-frames (I-frames) and Inter-frames (P-frames):
 - I-frames are treated as independent images. Transform coding method similar to JPEG is applied within each I-frame, hence "Intra".
 - P-frames are not independent: coded by a forward predictive coding method (prediction from a previous P-frame is allowed — not just from a previous I-frame).
 - Temporal redundancy removal is included in P-frame coding, whereas Iframe coding performs only spatial redundancy removal.
 - To avoid propagation of coding errors, an I-frame is usually sent a couple of times in each second of the video.

Motion vectors in H.261 are always measured in units of full pixel and they have a limited range of \pm 15 pixels, i.e., p = 15!

Intra-frame (I-frame) Coding

I-frame Coding.

- Macroblocks are of size 16 x 16 pixels for the Y frame, and 8 x 8 for Cb and Cr frames, since 4:2:0 chroma subsampling is employed. A macroblock consists of four Y, one Cb, and one Cr 8 x 8 blocks.
- For each 8 x 8 block a DCT transform is applied, the DCT coefficients then go through quantization zigzag scan and entropy coding.

P-frame Coding Based on Motion Compensation

Inter-frame (P-frame) Predictive Coding

- For each macroblock in the Target frame, a motion vector is allocated by one of the search methods discussed earlier.
- After the prediction, a difference macroblock is derived to measure the prediction error.
- Each of these 8 x 8 blocks go through DCT, quantization, zigzag scan and entropy coding procedures.

What if no good match is found?

- Sometimes, a good match cannot be found, i.e., the prediction error exceeds a certain acceptable level.
- The MB itself is then encoded (treated as an Intra MB) and in this case it is termed a *non-motion compensated MB*.

For a motion vector, the difference MVD is sent for entropy coding: $MVD = MV_{Preceding} - MV_{Current}$

Quantization in H.261

- The quantization in H.261 uses a constant *step_size*, for all DCT coefficients within a macroblock.
- If we use *DCT* and *QDCT* to denote the DCT coefficients before and after the quantization, then for DC coefficients in Intra mode:

$$QDCT = round\left(\frac{DCT}{step_size}\right) = round\left(\frac{DCT}{8}\right)$$

for all other coefficients:

$$QDCT = \left\lfloor \frac{DCT}{step_size} \right\rfloor = \left\lfloor \frac{DCT}{2*scale} \right\rfloor$$

scale — an integer in the range of [1, 31].

Encoder and Decoder

(a) Encoder

Decoder

(b) Decoder

Data Flow at the Observation Points in H.261 Encoder

Current Frame	Observation Point					
	1	2	3	4	5	6
Ι	Ι			Ĩ	0	Ĩ
P_1	P_1	P'_1	D_1	$\tilde{D_1}$	P'_1	$\tilde{P_1}$
P_2	P_2	P'_2	D_2	$ ilde{D_2}$	P'_2	\tilde{P}_2

Data Flow at the Observation Points in H.261 Decoder

Current Frame	Obs	Point		
	1	2	3	4
Ι	Ĩ		0	\widetilde{I}
P_1	$\tilde{D_1}$	P'_1	P'_1	$\tilde{P_1}$
P ₂	$ ilde{D_2}$	P'_2	P'_2	$\tilde{P_2}$

A Glance at Syntax of H.261 Video Bitstream

Syntax of H.261 video bitstream consists of a hierarchy of four layers:

- 1. Picture layer
- 2. Group of Blocks (GOB) layer
- 3. Macroblock layer
- 4. Block layer

Syntax of H.261 Video Bitstream.

- PSC Picture Start Code
- PType Picture Type
- GBSC GOB Start Code
- GQuant GOB Quantizer
- MQuant MB Quantizer
- CBP Coded Block Pattern

- TR Temporal Reference
- GOB Group of Blocks
- GN Group Number
- MB Macroblock
- MVD Motion Vector Data
- EOB End of Block

The Picture layer

PSC (Picture Start Code) delineates boundaries between pictures. TR (Temporal Reference) provides a time-stamp for the picture.

The GOB layer

- H.261 pictures are divided into regions of 11 x 3 macroblocks, each of which is called a Group of Blocks (GOB).
- For instance, the CIF image has 2 x 6 GOBs, corresponding to its image resolution of 352 x 288 pixels. Each GOB has its Start Code (GBSC) and Group number (GN).
- In case a network error causes a bit error or the loss of some bits, H.261 video can be recovered and resynchronized at the next identifiable GOB.
- GQuant indicates the Quantizer to be used in the GOB unless it is overridden by any subsequent MQuant (Quantizer for Macroblock). GQuant and MQuant are referred to as scale.

The Macroblock layer

Each Macroblock (MB) has its own Address indicating its position within the GOB, Quantizer (MQuant), and six 8 x 8 image blocks (4 Y, 1 Cb, 1 Cr).

The Block layer

For each 8 x 8 block, the bitstream starts with DC value, followed by pairs of length of zerorun (Run) and the subsequent non-zero value (Level) for ACs, and finally the End of Block (EOB) code. The range of Run is [0; 63]. Level reflects quantized values — its range is [-127, 127] and Level \neq 0.

Arrangement of GOBs in H.261 Luminance Images

GOB 0	GOB 1
GOB 2	GOB 3
GOB 4	GOB 5
GOB 6	GOB 7
GOB 8	GOB 9
GOB 10	GOB 11

QCIF

CIF

H.263

- H.263 is an improved video coding standard for video conferencing
- Aims at low bit-rate communications at bit-rates of less than 64 kbps
- Uses predictive coding for inter-frames transform coding for the remaining

Video Formats Supported by H.263

Video	Luminance	Chrominance	Bit-rate (Mbps)	Bit-rate (kbps)		
format	image image		(if 30 fps and	BPPmaxKb		
	resolution	resolution	uncompressed)	(compressed)		
sub-QCIF	128 imes 96	64 imes 48	4.4	64		
QCIF	176 imes 144	88×72	9.1	64		
CIF	352×288	176 imes 144	36.5	256		
4CIF	704 imes 576	352 imes 288	146.0	512		
16CIF	1,408 imes 1,152	704 imes 576	583.9	1024		

Motion Vectors are predicted from the "previous", "above" and "above and right" MBs

	MV2	MV3
MV1	MV	

MV Current Motion VectorMV1 Previous Motion VectorMV2 Above Motion VectorMV3 Above and Right Motion Vector

For the Macroblock with MV(u, v) the error vector (δu , δv) is coded

- $\delta u = u u_p$
- $\delta \mathbf{v} = \mathbf{v} \mathbf{v}_p$
- $u_p = median(u_1, u_2, u_3),$
- $v_p = median(v_1, v_2, v_3)$.

Half-pixel Prediction

Half-Pixel Precision

- In order to reduce the prediction error, half-pixel precision is supported in H.263 vs. full-pixel precision only in H.261.
- The default range for both the horizontal and vertical components u and v of MV(u, v) are now [-16, 15.5].
- The pixel values needed at half-pixel positions are generated by a simple bilinear interpolation method.

MPEG Overview

- MPEG: *Moving Pictures Experts Group*, established in 1988 for the development of digital video.
- It is appropriately recognized that proprietary interests need to be maintained within the family of MPEG standards:
 - Accomplished by defining only a compressed bitstream that implicitly defines the decoder.
 - The compression algorithms, and thus the encoders, are completely up to the manufacturers.

MPEG 1 – storage and retrieval MPEG 2 – digital TV MPEG4/H.264 – storage and retrieval

Motion Compensation in MPEG-1

The Need for Bidirectional Search

Target frame

Next frame

• The MB containing part of a ball in the Target frame cannot find a good matching MB in the previous frame because half of the ball was occluded by another object. A match however can readily be obtained from the next frame.

B-frame Coding Based on Bidirectional Motion Compensation

MPEG Frame Sequence

GOBs are replaced by Slices

MPEG-1 Slices

- May contain variable numbers of macroblocks in a single picture.
- May also start and end anywhere as long as they fill the whole picture.
- Each slice is coded independently additional flexibility in bit-rate control.
- Slice concept is important for error recovery.

Different quantization tables for its Intra and Inter coding

• For DCT coefficients in Intra mode:

$$QDCT[i, j] = round\left(\frac{8 \times DCT[i, j]}{step_size[i, j]}\right) = round\left(\frac{8 \times DCT[i, j]}{Q_1[i, j] * scale}\right)$$

• For DCT coefficients in Inter mode:

$$QDCT[i, j] = \left\lfloor \frac{8 \times DCT[i, j]}{step_size[i, j]} \right\rfloor = \left\lfloor \frac{8 \times DCT[i, j]}{Q_2[i, j] * scale} \right\rfloor$$

Default Quantization Table (Q₁) for Intra-Coding

	-			-	-		-
8	16	19	22	26	27	29	34
16	16	22	24	27	29	34	37
19	22	26	27	29	34	34	38
22	22	26	27	29	34	37	40
22	26	27	29	32	25	40	48
26	27	29	32	35	40	48	58
26	27	29	34	38	46	56	69
27	29	35	38	46	56	69	83

Default Quantization Table (Q₂) for Inter-Coding

	-						
16	16	16	16	16	16	16	16
16	16	16	16	16	16	16	16
16	16	16	16	16	16	16	16
16	16	16	16	16	16	16	16
16	16	16	16	16	16	16	16
16	16	16	16	16	16	16	16
16	16	16	16	16	16	16	16
16	16	16	16	16	16	16	16

Half-pixel precision with an increased range of [-512, 511.5]

Random access by GOP layer in which each GOP is time coded!

Typical Sizes of MPEG-1 Frames

Туре	Size	Compression
I	18kB	7:1
Р	6kB	20:1
В	2.5kB	50:1
Avg	4.8kB	27:1

- The typical size of compressed P-frames is significantly smaller than that of I-frames because temporal redundancy is exploited in inter-frame compression.
- B-frames are even smaller than P-frames because of (a) the advantage of bi-directional prediction and (b) the lowest priority given to B-frames.

Layers of MPEG-1 Video Bitstream.

MPEG2

For higher quality video at a bitrate of more than 4 Mbps!

MPEG-27 Profiles

- 1. Simple
- 2. Main
- 3. SNR scalable
- 4. Spatially scalable
- 5. High
- 6. 4:2:2
- 7. Multiview.

Supporting Interlaced Video

Frame-picture

(a)

Field-pictures

Supporting Interlaced Video

- MPEG-2 must support interlaced video as well since this is one of the options for digital broadcast TV and HDTV.
- In interlaced video each frame consists of two fields, referred to as the *top-field* and the *bottom-field*.
- In a Frame-picture, all scanlines from both fields are interleaved to form a single frame, then divided into 16×16 macroblocks and coded using MC.
- If each field is treated as a separate picture, then it is called *Field-picture*.

Five Modes of Predictions

- **1.Frame Prediction for Frame-pictures**
- 2. Field Prediction for Field-pictures
- 3. Field Prediction for Frame-pictures
- 4.16×8 MC for Field-pictures
- 5. Dual-Prime for P-pictures

MPEG-2 Scalabilities

- A base layer and one or more enhancement layers can be defined
- Useful for
 - Networks with very different bit-rates.
 - Networks with variable bit rate (VBR) channels.
 - Networks with noisy connections.

MPEG-2 supports the following scalabilities

- 1. SNR Scalability—enhancement layer provides higher SNR.
- 2. Spatial Scalability enhancement layer provides higher spatial resolution.
- 3. Temporal Scalability—enhancement layer facilitates higher frame rate.
- 4. Hybrid Scalability combination of any two of the above three scalabilities.
- 5. Data Partitioning quantized DCT coefficients are split into partitions.

MPEG 2 Support of 4:2:2 and 4:4:4 chroma subsampling

Better resilience to bit-errors: In addition to *Program Stream*, a *Transport Stream* is added to MPEG-2 bit streams!

Two types of scales are allowed

$scale_i = i \& scale_i \neq i$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$scale_i$	1	2	3	4	5	6	7	8	10	12	14	16	18	20	22	24
i	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
$scale_i$	28	32	36	40	44	48	52	56	64	72	80	88	96	104	112	

MPEG-4

- MPEG-4 departs from its predecessors in adopting a new object-based coding
- The bit-rate for MPEG-4 video now covers a large range between 5 kbps to 10 Mbps.

Composition MPEG-4 Videos (VOP = Video object plane)

