
Lecture 2 
Audio Capture and 

Compression 

Ref: Fundamentals of Multimedia 



Audio is a wave 
phenomenon 

•  Speaker moves back and fourth and 
generates longitudinal pressure waves 

•  Ear perceives that as sound 
•  No air, no sound 



Pressure to Voltage 
Conversion 

Pressure	 Voltage	



ADC 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been 
corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then 
insert it again.
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If you do not like cats, especially Necoro, you may like dogs  
-- the Sony Aibo 10

Personal Robots Next...???
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Analog & Digital Signals
Continuous functionContinuous function V of 
continuouscontinuous variable t (time, 
space etc) : V(t).

Analog
Discrete functionDiscrete function Vk of 
discretediscrete sampling variable tk, 
with k = integer: Vk = V(tk).

Digital
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Uniform (periodic) sampling. 
Sampling frequency fS = 1/ tS
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Shannon’s Sampling Theorem
A signal s(t) with maximum frequency fMAX can be 
recovered if sampled at frequency  fS > 2 fMAX .

Condition on fS?

fS > 300 Hz

t)cos(100πt)πsin(30010t)πcos(503s(t) −⋅+⋅=

F1=25 Hz, F2 = 150 Hz, F3 = 50 Hz

F1 F2 F3

fMAX

Example

Nyquist frequency (rate) fN = 2 fMAX or fMAX or fS,MIN or fS,MIN/2

Digital Analogue 



Discretization 

•  Time axis  
–  sampling 

•  Amplitude axis  
–  quantization 

Sampler, Quantizer and Encoder
(ADC: Analog-to-Digital Converter)

Quan. Level
15 (1111)
14 (1110)
13 (1101)
12 (1100)
11 (1011)
10 (1010)
9  (1001)
8  (1000)
7  (0111)
6  (0110)
5  (0101)
4  (0100)
3  (0011)
2  (0010)
1  (0001)
0  (0000)

T Time

Quantization interval q

2T 3T 4T 5T0

Sample and Hold

Sampling freq. at least
twice the Nyquist rate 
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Frequency Components of 
Audio Signal 



+	

=	



+	

=	



+	

=	



+	

=	



+	

=	



+	

=	



~ 



Time Domain Vs Frequency Domain 
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Figure 1: Spectrum of bandlimited signal g(t)

• The maximum frequency component of g(t) is fm. To recover

the signal g(t) exactly from its samples it has to be sampled at

a rate fs ≥ 2fm.

• The minimum required sampling rate fs = 2fm is called

✬

✫

✩

✪

Nyquist rate.

Proof: Let g(t) be a bandlimited signal whose bandwidth is fm

(ωm = 2πfm).

g(t) G(   )

0

(a) (b)

−  m m

ω

 ω ω

Figure 2: (a) Original signal g(t) (b) Spectrum G(ω)

δT (t) is the sampling signal with fs = 1/T > 2fm.

t f -fm fm 



Sampling Theorem  
A signal can be reconstructed exactly if 
it is sampled at a rate at least twice the 
maximum frequency component in it! 



Nyquist rate = 2fm 



What should be sampling 
rate for audio? 



Audible Range: 20 Hz to 20 kHz 

Voice Range: 0 to 4 kHz!	

Sample (music) >40k samples  

Sample(speech) > 8k samples	



How do you ensure 
no aliasing? 

Low pass filter the signal before 
passing to ADC! 



Quantization 
•  Representing large set of values with 

a smaller number of values. 

•  The large set may have continuous 
values also. 



Signal to Quantization 
Noise Ratio 

SQNR = 6.02NDB 



Exercise: Quantize the following 5 bit 
signals into 2 bit signals! 

{23, 12, 9, 5, 31, 16, 19, 4, 13, 22} 

•  There are four code-words: 0, 1, 2, 3 
•  Obtain interval each code-word represents to 

obtain codes 
•  Obtain representative value corresponding to 

each code-word to decode 
•  Put all this information in a table. 



Linear Vs Non-linear 
Quantization 

•  Linear Quantization: equal step 
•  Non-linear Quantization: unequal 

steps 



Pulse Code Modulation 

•  Each audio sample is represented by an 
integer code-word. 

•  Linear PCM uses linear quantization and 
non-linear PCM  uses non-linear 
quantization 

•  Non-linear PCM is also called companding 



Weber’s Law 

ΔStimulus 
 Stimulus 	

ΔResponse α	



100 200 500 600 1200 1300 



Companding 148 6 Basics of Digital Audio

Fig. 6.6 Nonlinear transform
for audio signals
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Thus, nonuniform quantization schemes that take advantage of this perceptual
characteristic make use of logarithms. The idea is that in a log plot derived from
Eq. (6.8), if we simply take uniform steps along the s axis, we are not mirroring the
nonlinear response along the r axis.

Instead, we would like to take uniform steps along the r axis. Thus, nonlinear
quantization works by first transforming an analog signal from the raw s space into
the theoretical r space, then uniformly quantizing the resulting values. The result is
that for steps near the low end of the signal, quantization steps are effectively more
concentrated on the s axis, whereas for large values of s, one quantization step in r
encompasses a wide range of s values.

Such a law for audio is called µ-law encoding, or u-law, since it’s easier to write.
A very similar rule, called A-law, is used in telephony in Europe.

The equations for these similar encoding methods are as follows:
µ-law:
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where sign(s) =
{

1 if s > 0,
−1 otherwise

Figure 6.6 depicts these curves. The parameter of the µ-law encoder is usually set
to µ = 100 or µ = 255, while the parameter for the A-law encoder is usually set to
A = 87.6.



μ-law  
Companding 
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Thus, nonuniform quantization schemes that take advantage of this perceptual
characteristic make use of logarithms. The idea is that in a log plot derived from
Eq. (6.8), if we simply take uniform steps along the s axis, we are not mirroring the
nonlinear response along the r axis.

Instead, we would like to take uniform steps along the r axis. Thus, nonlinear
quantization works by first transforming an analog signal from the raw s space into
the theoretical r space, then uniformly quantizing the resulting values. The result is
that for steps near the low end of the signal, quantization steps are effectively more
concentrated on the s axis, whereas for large values of s, one quantization step in r
encompasses a wide range of s values.

Such a law for audio is called µ-law encoding, or u-law, since it’s easier to write.
A very similar rule, called A-law, is used in telephony in Europe.

The equations for these similar encoding methods are as follows:
µ-law:

r = sign(s)
ln(1 + µ)
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where sign(s) =
{

1 if s > 0,
−1 otherwise

Figure 6.6 depicts these curves. The parameter of the µ-law encoder is usually set
to µ = 100 or µ = 255, while the parameter for the A-law encoder is usually set to
A = 87.6.

A-law  
Companding! 
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Thus, nonuniform quantization schemes that take advantage of this perceptual
characteristic make use of logarithms. The idea is that in a log plot derived from
Eq. (6.8), if we simply take uniform steps along the s axis, we are not mirroring the
nonlinear response along the r axis.

Instead, we would like to take uniform steps along the r axis. Thus, nonlinear
quantization works by first transforming an analog signal from the raw s space into
the theoretical r space, then uniformly quantizing the resulting values. The result is
that for steps near the low end of the signal, quantization steps are effectively more
concentrated on the s axis, whereas for large values of s, one quantization step in r
encompasses a wide range of s values.

Such a law for audio is called µ-law encoding, or u-law, since it’s easier to write.
A very similar rule, called A-law, is used in telephony in Europe.

The equations for these similar encoding methods are as follows:
µ-law:

r = sign(s)
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where sign(s) =
{

1 if s > 0,
−1 otherwise

Figure 6.6 depicts these curves. The parameter of the µ-law encoder is usually set
to µ = 100 or µ = 255, while the parameter for the A-law encoder is usually set to
A = 87.6.



How to Implement Companding? 

1.  Use non-uniform quantization steps in the 
ADC internally 

2.  Use additional nonlinear analog circuit 
before linear ADC 

3.  Use a 12 bit ADC and a software lookup 
table to get the codes 
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Fig. 6.14 Pulse code modulation (PCM): a original analog signal and its corresponding PCM
signals; b decoded staircase signal; c reconstructed signal after low-pass filtering

Bandlimiting
filter

Linear PCM

Transmission

Low-pass
filter

Digital-to-analog
converter

Input analog
speech signal

Output analog
speech signal

µ-law or
A-law

compressor

µ-law or
A-law

expander

Fig. 6.15 PCM signal encoding and decoding

signal but, because of the sharp corners, also a theoretically infinite set of higher fre-
quency components (from the theory of Fourier analysis, in signal processing). We
know these higher frequencies are extraneous. Therefore, the output of the digital-
to-analog converter is in turn passed to a low-pass filter, which allows only frequen-
cies up to the original maximum to be retained. Figure 6.15 shows the complete
scheme for encoding and decoding telephony signals as a schematic. As a result
of the low-pass filtering, the output becomes smoothed, as Fig. 6.14c shows. For
simplicity, Fig. 6.14 does not show the effect of companding.



Companding in mainly used 
in Telephony! 
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Table 6.2 Bitrate and bandwidth in sample audio applications

Quality Sampling Bits per Mono/ Bitrate Signal
rate sample Stereo (if uncompressed) bandwidth
(kHz) (kB/s) (Hz)

Telephone 8 8 Mono 8 200–3,400
AM radio 11.025 8 Mono 11.0 100–5,500
FM radio 22.05 16 Stereo 88.2 20–11,000
CD 44.1 16 Stereo 176.4 5–20,000
DVD audio 192 (max) 24 (max) Up to 6 channels 1,200.0 (max) 0–96,000 (max)

So for analog devices, the bandwidth was expressed in the frequency unit, called
Hertz (Hz), which is cycles per second (for example, heartbeats per second). For
digital devices, on the other hand, the amount of data that can be transmitted in a
fixed bandwidth is usually expressed in bitrate, i.e., bits per second (bps) or bytes
per amount of time.

In contrast, in Computer Networking, the term bandwidthrefers to the data rate
(bps) that the network or tranmission link can deliver. We will examine this issue in
detail in later chapters on multimedia networks.

Telephony uses µ-law (which may be written “u-law”) encoding, or A-law in
Europe. The other formats use linear quantization. Using the µ-law rule shown in
Eq. (6.9), the dynamic range—the ratio of highest to lowest nonzero value, expressed
in dB for the value 2n for an n-bit system, or simply stated as the number of bits—of
digital telephone signals is effectively improved from 8 bits to 12 or 13.

The standard sampling frequencies used in audio are 5.0125 kHz, 11.025 kHz,
22.05 kHz, and 44.1 kHz, with some exceptions, and these frequencies are supported
by most sound cards.

Sometimes it is useful to remember the kinds of data rates in Table 6.2 in terms of
bytes per minute. For example, the uncompressed digital audio signal for CD-quality
stereo sound is 10.6 megabytes per minute—roughly 10 megabytes—per minute.

6.1.9 Synthetic Sounds

Digitized sound must still be converted to analog, for us to hear it. There are two
fundamentally different approaches to handling stored sampled audio. The first is
termed FM, for frequency modulation. The second is called Wave Table, or just Wave,
sound.

In the first approach, a carrier sinusoid is changed by adding another term involving
a second, modulating frequency. A more interesting sound is created by changing
the argument of the main cosine term, putting the second cosine inside the argument
itself—then we have a cosine of a cosine. A time-varying amplitude “envelope”
function multiplies the whole signal, and another time-varying function multiplies



Differential Coding 
•  In real life, things vary smoothly, hence the 

differences are small. 
•  Encode the current sample based on the 

value of previously encoded sample! 



Lossless Predictive Coding 
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Fig. 6.17 Schematic diagram for Predictive Coding: a encoder; b decoder

Then the first error, e1, is zero, and subsequently

f̂2 = 21, e2 = 22 − 21 = 1

f̂3 = ⌊1
2
( f2 + f1)⌋ = ⌊1

2
(22 + 21)⌋ = 21

e3 = 27 − 21 = 6

f̂4 = ⌊1
2
( f3 + f2)⌋ = ⌊1

2
(27 + 22)⌋ = 24

e4 = 25 − 24 = 1

f̂5 = ⌊1
2
( f4 + f3 )⌋ = ⌊1

2
(25 + 27 )⌋ = 26

e5 = 22 − 26 = −4 (6.16)

The error does center around zero, we see, and coding (assigning bitstring codewords)
will be efficient. Figure 6.17 shows a typical schematic diagram used to encapsulate
this type of system. Notice that the Predictor emits the predicted value f̂n. What is
invariably (and annoyingly) left out of such schematics is the fact that the predictor
is based on fn −1, fn −2, . . .. Therefore, the predictor must involve a memory. At
the least, the predictor includes a circuit for incorporating a delay in the signal,
to store fn −1.

6.3.5 DPCM

Differential Pulse Code Modulation is exactly the same as Predictive Coding, Pre-
dictive coding except that it incorporates a quantizer step. Quantization is as in PCM
and can be uniform or nonuniform. One scheme for analytically determining the
best set of nonuniform quantizer steps is the Lloyd-Max quantizer, named for Stuart
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What is the goal of 
predictor? 

Based on the current and past samples, 
predict a value as close to the next sample 

value as possible! 



Would taking difference 
always compress the 

signal? 



•  E.g. -14, -12, -10, -5, 4, 11, 15, -3  
•  Range is -16 to + 15 
•  Need 5 bits to encode each sample 

Case 1: differences are 
limited to a small range 



Case 2: differences consists 
of runs of numbers 

•  This will happen when input mostly varies 
linearly   
– e.g. 1,1,1,0,0,-1,-1,-1,-1 

•  Count the run length, and just send the 
count for each symbol 
– 1(3),0(2),-1(4) 



Run Length Encoding 

1110011111         1 3 0 2 1 5 

Values Run Lengths 



Case 3: differences are not 
limited to a small range 

•  The maximum possible range is -512 to 
+512 

•  It is actually double of the original signal 
range 

•  In this case, observe the histogram of the 
differences 



Histogram of differences 
is more peaked! 
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Fig. 6.16 Differencing
concentrates the histogram:
a digital speech signal;
b histogram of digital speech
signal values; c histogram of
digital speech signal
differences
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considerations, so let’s do that here (we won’t use the most complicated scheme, but
we’ll try to carry out an entire calculation). As a simple example, suppose we devise
a predictor for f̂n as follows:

f̂n = ⌊1
2
( fn − 1 + fn − 2)⌋

en = fn − f̂n (6.15)

Then the error en (or a codeword for it) is what is actually transmitted.
Let’s consider an explicit example. Suppose we wish to code the sequence

f1, f2, f3, f4, f5 = 21, 22, 27, 25, 22. For the purposes of the predictor, we’ll invent an
extra signal value f0, equal to f1 = 21, and first transmit this initial value, uncoded;
after all, every coding scheme has the extra expense of some header information.
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Input Signal Sample values Sample differences 



Assign short codes 
to prevalent values! 

For exceptionally large differences, use SU 
(+32) and SD (-32) symbols! 



Huffman Codes for 
the Following Source 

A:(15), B:(7), C:(6), D:(6), E:(5)  



Huffman coding is also called 
- Entropy coding 
- Variable length coding 
- Prefix coding 
- Source coding 



Limitation: Bits per symbol 
can never be less than 
entropy of the source! 

This is also limit of any 
lossless compression method! 



Let us represent the 
differences in a fewer 

number of levels! 

Quantization! 



Example 
For 8 bit integer values, error is in the range 
-255 to 255 
•  511 levels 
•  quantization step =16 
•  code-words = 32 
•  representative value is midway of step 
•  the lookup table has steps, code (0 to 31), 

and quantized error 



•  Bigger step needs less bits but produces 
more distortion 

•  Smaller step will increase the number of 
bits and reduce compression 

•  Optimal solution will need non-linear 
quantization 

How to choose 
quantization step? 



Goal: for a fixed number of 
levels, design best non-linear 

quantization scheme!  



Minimize Quantization 
Error on a Patch 
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Lloyd and Joel Max, which is based on a least-squares minimization of the error
term.

Here, we should adopt some nomenclature for signal values. We shall call the
original signal fn, the predicted signal f̂n, and the quantized, reconstructed signal
f̃n. How DPCM operates is to form the prediction, form an error en by subtracting
the prediction from the actual signal, then quantize the error to a quantized version,
ẽn. The equations that describe DPCM are as follows:

f̂n = function_of ( f̃n−1, f̃n−2, f̃n−3, . . .)

en = fn − f̂n

ẽn = Q[en] (6.17)

transmit codeword(ẽn)

reconstruct: f̃n = f̂n + ẽn

Codewords for quantized error values ẽn are produced using entropy coding, such as
Huffman coding (discussed in Chap. 7).

Notice that the predictor is always based on the reconstructed, quantized version of
the signal: the reason for this is that then the encoder side is not using any information
not available to the decoder side. Generally, if by mistake we made use of the actual
signals fn in the predictor instead of the reconstructed ones f̃n, quantization error
would tend to accumulate and could get worse rather than being centered on zero.

The main effect of the coder–decoder process is to produce reconstructed, quan-
tized signal values f̃n = f̂n + ẽn. The “distortion” is the average squared error
[∑N

n=1( f̃n − fn)
2]/N , and one often sees diagrams of distortion versus the number

of bit levels used. A Lloyd-Max quantizer will do better (have less distortion) than
a uniform quantizer.

For any signal, we want to choose the size of quantization steps so that they
correspond to the range (the maximum and minimum) of the signal. Even using a
uniform, equal-step quantization will naturally do better if we follow such a practice.
For speech, we could modify quantization steps as we go, by estimating the mean
and variance of a patch of signal values and shifting quantization steps accordingly,
for every block of signal values. That is, starting at time i we could take a block of
N values fn and try to minimize the quantization error:

min
i+N−1∑

n=i

( fn − Q[ fn])2 (6.18)

Since signal differences are very peaked, we could model them using a Laplacian
probability distribution function, which is also strongly peaked at zero [6]: it looks
like l(x) = (1/

√
2σ 2)ex p (−

√
2|x |/σ ), for variance σ 2. So typically, we assign

quantization steps for a quantizer with nonuniform steps by assuming that signal
differences, dn, say, are drawn from such a distribution and then choosing steps to
minimize

min
i+N−1∑

n=i

(dn − Q[dn])2 l(dn) (6.19)
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Table 6.7 DPCM quantizer
reconstruction levels en in range Quantized to value

−255 ..−240 −248
−239 ..−224 −232

...
...

−31 ..−16 −24
−15 .. 0 −8
1 .. 16 8

17 .. 32 24
...

...

225 .. 240 232
241 .. 255 248

Table 6.7 gives output values for any of the input codes: 4-bit codes are mapped
to 32 reconstruction levels in a staircase fashion. (Notice that the final range includes
only 15 levels, not 16.)

As an example stream of signal values, consider the set of values

f1 f2 f3 f4 f5
130 150 140 200 230

We prepend extra values f = 130 in the datastream that replicate the first value, f1,
and initialize with quantized error ẽ1 ≡ 0, so that we ensure the first reconstructed
value is exact: f̃1 = 130. Then subsequent values calculated are as follows (with
prepended values in a box):

f̂ = 130 , 130, 142, 144, 167

e = 0 , 20, −2, 56, 63

ẽ = 0 , 24, −8, 56, 56

f̃ = 130 , 154, 134, 200, 223

On the decoder side, we again assume extra values f̃ equal to the correct value f̃1,
so that the first reconstructed value f̃1 is correct. What is received is ẽn, and the
reconstructed f̃n is identical to the one on the encoder side, provided we use exactly
the same prediction rule.

6.3.6 DM

DM stands for Delta Modulation , a much-simplified version of DPCM often used as
a quick analog-to-digital converter. We include this scheme here for completeness.
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