Week 3 Audio Analysis 1

Introduction to Audio Analysis – A Matlab Approach, Theodoros Giannakopoulos and Aggelos Pikrakis
Machine Learning for Audio, Image and Video Analysis, Francesco Camastra and Alessandro Vinciarelli
Introduction to Digital Speech Processing, Rabiner and Schafer

How do you analyze continuous media?

Short-term overlapping windows!

$$x_i(n) = x(n)w(n-m_i)$$

Windowing Issues

- 1. What should be the shape of the window?
- 2. What should be the duration of the window?
- 3. How much should be overlap between two consecutive windows?

Choosing Window Shape

- Windowing distorts frequency response (spectral leakage)
- With rectangular window, additional high frequency components appear
- Choose a shape that causes least distortion

Choosing Window Shape

- Rectangular
- Hanning
- Hamming
- Blackman
- Kaiser

Choosing Window Size

- Smaller window provides better time resolution
- Bigger window provides better frequency granularity, but loses time resolution
- We generally choose 10ms to 50ms for audio analysis

Choosing overlap

- Overlap also improves better time resolution without affecting frequency response, but needs more resources
- Experimentally choose the overlap needed for the given task
- Generally we choose 50% overlap

Mid-Term Windowing (1s-10s)

- Audio signal is first divided into mid-term segments
- Shot-term processing is done on each segment
- Effectively, it is like combining few shotterm coefficients

Color Bar Representation of Magnitude

What are features?

- Abstract representation of the signal
- Features should be distinctive
- Features should be compact

Time Domain Vs Frequency Domain

- Time domain features process the signal directly
- Frequency domain features are derived from the frequency response of the signal

Time Domain Features

How to detect silence in audio?

The sample magnitudes are low during silence!

Audio Energy

Audio Energy Applications

- Silence has low energy
- Speech has more energy variance than music, why?
- How to compare variance of energy of two segments?

We can normalize σ^2 by μ

Given two audio files, how will you decide which file is more noisy?

Zero Crossing Rate

The rate of sign changes

$$Z(i) = \frac{1}{2W_L} \sum_{n=1}^{W_L} |sgn[x_i(n)] - sgn[x_i(n-1)]$$

where

$$sgn[x_i(n)] = \begin{cases} 1, & x_i(n) \ge 0, \\ -1, & x_i(n) < 0. \end{cases}$$

Properties of ZCR

- Generally noise/silence/unvoiced speech has higher ZCR than voiced speech
- High ZCR implies high frequency in a coarse manner
- Variance of ZCR is higher for speech than music

Histogram of σ of ZCR

How would you capture smooth and abrupt variations in audio sample? e.g. gunshot

Entropy reduces at the onset of three gunshots

Properties of energy entropy

- Both short-term and long-term analysis are possible
- Low entropy at onset of many sounds, e.g. gunshot, explosion
- Generally lower values for electronic music and higher for classic music

Time Domain & Frequency Domain

- Features discussed so far are calculated in time domain
- Sometimes frequency components are more informative

MFCC Mel-Frequency Cepstrum Coefficients or Mel-Frequency Cepstral Coefficients

Ref:http://practicalcryptography.com/miscellaneous/machine-learning/guide-melfrequency-cepstral-coefficients-mfccs/

Main Observation

Human Auditory Systems can distinguish neighboring frequencies better in lower region!

1. Divide the signal into short frames

- assume audio does not change statistically in short periods
- generally 20-40ms frames
- frame step is generally 10ms

2. Calculate DFT

- DFT points are more than window size
- for a 400 sample window, take 512 point DFT
- consider only half coefficients, i.e., 257 in the case above
- calculate poser spectral coefficients, which is square of the absolute value divided by total number of coefficients (257)

4. Determine energy in each filter

- we have 26 vectors of size 257 each as filter bank
- calculate sum of coefficients in each filter after multiplying with triangular window
- this will lead to 26 values which represent energy in each filter bank

5. Take logarithmic of each filter-bank energy

 we don't hear loudness on linear scale but on a logarithmic scale

Take DCT of log filterbank energies and keep 2-13 coefficients!

MFCC

More Spectral Features

- Spectral centroid
- Spectral entropy
- Spectral flux
- Spectral rolloff