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How do you analyze 
continuous media? 



Short-term overlapping 
windows! 

xi(n) = x(n)w(n-mi) 



Windowing Issues 
1.  What should be the shape of the 

window? 
2.  What should be the duration of the 

window? 
3.  How much should be overlap between 

two consecutive windows? 



Choosing Window Shape 

•  Windowing distorts frequency 
response (spectral leakage) 

•  With rectangular window, additional 
high frequency components appear 

•  Choose a shape that causes least 
distortion 



•  Rectangular  
•  Hanning  
•  Hamming  
•  Blackman  
•  Kaiser  
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Choosing Window Size 
•  Smaller window provides better time 

resolution 
•  Bigger window provides better frequency 

granularity, but loses time resolution 
•  We generally choose 10ms to 50ms for 

audio analysis  



Choosing overlap 
•  Overlap also improves better time 

resolution without affecting frequency 
response, but needs more resources 

•  Experimentally choose the overlap 
needed for the given task  

•  Generally we choose 50% overlap 



Mid-Term Windowing 
(1s-10s) 

•  Audio signal is first divided into mid-term 
segments 

•  Shot-term processing is done on each 
segment 

•  Effectively, it is like combining few shot-
term coefficients 



Color Bar Representation 
of Magnitude  
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Spectrogram Introduction to Audio Analysis 41

Figure 3.3 The spectrogram of a speech signal. The frames are non-overlapping, 20 ms
long.

with a window function, which aims at attenuating the endpoints of the
frame while preserving the signal around the center of the frame. Popular
windows have been implemented by MATLAB in the hamming(),hann(),
and blackman() m-files. Each function creates a symmetric window based
on a different formula.

We are now revisiting the issue of frequency resolution with an example
that revolves around the STFT of two frequency-modulated signals. Before
we proceed with the example, remember that, on a frame basis, the distance
(in Hz) between two successive DFT coefficients is equal to Fs

N Hz, where
Fs is the sampling frequency and N is the number of samples of the frame.
The frequency resolution determines when two close frequencies will be
distinguishable in the spectrum of the signal. For a fixed sampling rate, Fs,
in order to improve the DFT resolution, we need to increase the length of
the short-term frame. However, as it has already been explained, the price
to pay is decreased time resolution. Our example creates the following two
synthetic signals:

x1(n) = cos(2π · 500n + 200cos(2π · n)),

x2(n) = cos(2π · 590n + 200cos(2π · n)).

Each signal is frequency modulated. Consider for example the first equation:
the term 200cos(2π ·n) creates a 1 Hz signal modulation,which has the effect
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What are features? 
•  Abstract representation of the 

signal 
•  Features should be distinctive 
•  Features should be compact 



Time Domain Vs 
Frequency Domain 

•  Time domain features process the signal 
directly 

•  Frequency domain features are derived 
from the frequency response of the signal 



Time Domain 
Features 



How to detect 
silence in audio? 

The sample magnitudes are low 
during silence! 



Audio Energy 

Introduction to Audio Analysis 71

Usually, energy is normalized by dividing it with WL to remove the
dependency on the frame length. Therefore, Eq. (4.1) becomes

E(i) = 1
WL

WL∑

n=1

|xi(n)|2. (4.2)

Equation (4.2) provides the so-called power of the signal. In the rest of
this chapter, we will use the power of the signal in our feature extraction
functions but for the sake of simplicity we will keep using the term ‘energy’
in the respective algorithmic descriptions.

The following function extracts the energy value of a given audio frame:

Short-term energy is expected to exhibit high variation over succes-
sive speech frames, i.e. the energy envelope is expected to alternate rapidly
between high and low energy states. This can be explained by the fact that
speech signals contain weak phonemes and short periods of silence between
words.Therefore, a mid-term statistic that can be used for classification pur-
poses in conjunction with short-term energy is the standard deviation σ 2 of
the energy envelope. An alternative statistic for short-term energy, which is
independent of the intensity of the signal, is the standard deviation by mean
value ratio, (σ 2

µ
) [16]. Figure 4.3 presents histograms of the standard devia-

tion by mean ratio for segments of the classes: music and speech. It has been
assumed that each segment is homogeneous, i.e. it contains either music or
speech.The figure indicates that the values of this statistic are indeed higher
for the speech class.The Bayesian error for the respective binary classification
task was found to be equal to 17.8% for this experiment, assuming that the
two classes are a priori equiprobable and that the likelihood of the statistic
(feature) given the class is well approximated using the extracted histograms.
Note, that the Bayesian error for the same binary classification task (music
vs speech), when the standard deviation statistic is used instead, increases



Audio Energy Applications 

•  Silence has low energy 
•  Speech has more energy variance 

than music, why? 
•  How to compare variance of energy 

of two segments? 



Histogram of σ2/μ 

72 Audio Features

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

0.25
Energy − stdbymean

music
speech

Figure 4.3 Histograms of the standard deviation by mean ratio (σ 2

µ ) of the short-term
energy for two classes: music and speech. Speech segments favor higher values of this
statistic. The Bayesian error for the respective binary classification task was 17.8%.

to 37%. Therefore, the normalization of the standard deviation feature by
dividing it with the respective mean value provides a crucial performance
improvement in this case.

Note:The term ‘Bayesian error’ that we have adopted in this chapter will
be further described in Chapter 5, where we introduce several funda-
mental classification concepts. For the moment, it suffices to say that the
Bayesian error refers to the classification performance of the Bayesian
classifier, which bases its classification decisions on posterior class prob-
abilities and is known to be optimal with respect to the probability of
error. Therefore, the Bayesian classifier provides a performance bound for
every classifier. In this chapter we use the term Bayesian error in a looser
sense, i.e. we assume that the classes are equiprobable and that the feature
histograms can be used to approximate successfully the probability den-
sity function of a feature given the class, thanks to the large amount of
audio samples that are used to generate the histograms. As will become

We can normalize σ2 by μ 



Given two audio files, how 
will you decide which file is 

more noisy? 



Zero Crossing Rate 
The rate of sign changes 

 
where 
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evident in Chapter 5, these assumptions permit us to imitate the oper-
ation of the Bayesian classifier via an approximation, although strictly
speaking, we are not using the Bayesian classifier per se.

4.3.2. Zero-Crossing Rate
The Zero-Crossing Rate (ZCR) of an audio frame is the rate of sign-changes
of the signal during the frame. In other words, it is the number of times the
signal changes value, from positive to negative and vice versa, divided by
the length of the frame. The ZCR is defined according to the following
equation:

Z(i) = 1
2WL

WL∑

n=1

| sgn[xi(n)] − sgn[xi(n − 1)] |, (4.3)

where sgn( · ) is the sign function, i.e.

sgn[xi(n)] =
{

1, xi(n) ≥ 0,

−1, xi(n) < 0.
(4.4)

In our toolbox, the computation of the zero-crossing rate for a given
frame is implemented in the following m-file:

ZCR can be interpreted as a measure of the noisiness of a signal. For
example, it usually exhibits higher values in the case of noisy signals. It is
also known to reflect, in a rather coarse manner, the spectral characteristics
of a signal [17]. Such properties of the ZCR, along with the fact that it is
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Properties of ZCR 
•  Generally noise/silence/unvoiced speech 

has higher ZCR than voiced speech 

•  High ZCR implies high frequency in a 
coarse manner 

•  Variance of ZCR is higher for speech than 
music 
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Figure 4.5 Histograms of the standard deviation of the ZCR for music and speech
classes. Speech segments yield higher feature values. The respective Bayesian error for
this binary classification task is 22.3%.

4.3.3. Entropy of Energy
The short-term entropy of energy can be interpreted as a measure of abrupt
changes in the energy level of an audio signal. In order to compute it, we
first divide each short-term frame in K sub-frames of fixed duration. Then,
for each sub-frame, j, we compute its energy as in Eq. (4.1) and divide it by
the total energy,EshortFramei ,of the short-term frame.The division operation is
a standard procedure and serves as the means to treat the resulting sequence
of sub-frame energy values, ej, j = 1, . . . , K , as a sequence of probabilities,
as in Eq. (4.5):

ej = EsubFramej

EshortFramei
, (4.5)

where

EshortFramei =
K∑

k=1

EsubFramek . (4.6)

At a final step, the entropy,H(i) of the sequence ej is computed according
to the equation:

H(i) = −
K∑

j=1

ej · log2 (ej). (4.7)



How would you capture 
smooth and abrupt variations 

in audio sample? 
e.g. gunshot 



Entropy of Energy 
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Entropy reduces at the 
onset of three gunshots Introduction to Audio Analysis 77
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Figure 4.6 Sequence of entropy values for an audio signal that contains the sounds of
three gunshots. Low values appear at the onset of each gunshot.

experimented with the entropy of energy in the context of detecting the
onset of abrupt sounds, e.g. [20, 21].

Figure 4.7 presents a second example, which is based on computing a
long-term statistic of this feature for segments belonging to the three musical
genres that were previously examined. Specifically, for each music segment,
we have selected the minimum of the sequence of entropy values as the long-
term feature that will eventually be used to discriminate among genres. It can
be seen that this long-term feature takes lower values for electronic music
and higher values for classical music (although a similar conclusion cannot
be reached for Jazz). This can be partly explained by the fact that electronic
music tends to contain many abrupt energy changes (low entropy),compared
to classical music, which exhibits a smoother energy profile. The reader is
reminded that such examples serve pedagogical needs and do not imply that
the adopted features are optimal in any sense or that they can necessarily
lead to acceptable performance in a real-world scenario.
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Properties of energy entropy 

•  Both short-term and long-term analysis 
are possible 

•  Low entropy at onset of many sounds, 
e.g. gunshot, explosion 

•  Generally lower values for electronic 
music and higher for classic music 

 



Time Domain & 
Frequency Domain 

•  Features discussed so far are 
calculated in time domain 

•  Sometimes frequency components 
are more informative 



MFCC 
Mel-Frequency Cepstrum Coefficients 

or 
Mel-Frequency Cepstral Coefficients  

Ref:http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-
frequency-cepstral-coefficients-mfccs/	



Main Observation 

Human Auditory Systems can 
distinguish neighboring 

frequencies better in lower region! 
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Figure 4.13 Frequency warping function for the computation of the MFCCs.

a number of frequency warping functions have been proposed, e.g.,

fw = 1127.01048 ∗ log ( f /700 + 1)

[26]. This equation is presented in Figure 4.13. In other words, the mel
scale is a perceptually motivated scale of frequency intervals, which, if
judged by a human listener, are perceived to be equally spaced.

3. If Õk, k = 1, . . . , L, is the power at the output of the kth filter, then the
resulting MFCCs are given by the equation

cm =
L∑

k=1

( log Õk) cos
[
m
(

k − 1
2

)
π

L

]
, m = 1, . . . , L. (4.13)

Therefore, according to Eq. (4.13), MFCCs are the discrete cosine trans-
form coefficients of the mel-scaled log-power spectrum.
MFCCs have been widely used in speech recognition [27],musical genre

classification [14], speaker clustering [28], and many other audio analysis
applications.

In this book we have adopted the implementation proposed by Slaney
in [29]. In order to improve computational complexity, we have added a
function that precomputes the basic quantities involved in the computation
of the MFCCs, i.e. the weights of the triangular filters and the DCT matrix.
The function that implements this preprocessing step is the following:



1. Divide the signal 
into short frames 
•  assume audio does not change 

statistically in short periods 
•  generally 20-40ms frames 
•  frame step is generally 10ms 



2. Calculate DFT 
•  DFT points are more than window size 
•  for a 400 sample window, take 512 point 

DFT  
•  consider only half coefficients, i.e., 257 in the 

case above 
•  calculate poser spectral coefficients, which is 

square of the absolute value divided by total 
number of coefficients (257) 



3. Apply Mel filter-bank 
(20-26 filters) 
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Fig. 12.4. MFCC extraction. From the top to the bottom the plot show the orig-
inal signal, some of the time segments extracted with the Hamming windows, the
spectrogram and the Mel filters.

The spectrogram provides rich information about the signal, but it can-
not be easily handled. It is necessary to select only part of its content. This
is the goal of the following step in the MFCC extraction process. There is
physiological evidence that humans cannot distinguish between frequencies
belonging to the same critical band (see Chapter 2), i.e. frequency intervals
centered around the so-called critical frequencies. For this reason, it is possi-
ble to sum the energies of the frequencies falling into the same critical band.
As a result, each column of the spectrogram can be summarized by around
20 values (another empirical parameter) accounting for the total energy in a
given critical band. This requires first to identify the critical frequencies and
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Therefore, according to Eq. (4.13), MFCCs are the discrete cosine trans-
form coefficients of the mel-scaled log-power spectrum.
MFCCs have been widely used in speech recognition [27],musical genre

classification [14], speaker clustering [28], and many other audio analysis
applications.

In this book we have adopted the implementation proposed by Slaney
in [29]. In order to improve computational complexity, we have added a
function that precomputes the basic quantities involved in the computation
of the MFCCs, i.e. the weights of the triangular filters and the DCT matrix.
The function that implements this preprocessing step is the following:



4. Determine energy 
in each filter 

•  we have 26 vectors of size 257 each as filter 
bank 

•  calculate sum of coefficients in each filter 
after multiplying with triangular window 

•  this will lead to 26 values which represent 
energy in each filter bank   



5. Take logarithmic of 
each filter-bank energy 
•  we don’t hear loudness on linear scale but 

on a logarithmic scale 



6. Take DCT of log filter-
bank energies and keep 

2-13 coefficients! 



MFCC 
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Fig. 12.3. MFCC extraction block diagram.

can make a significant difference in terms of recognition rate (percentage of
words correctly recognized).

12.3.2 The Speech Front End

As opposed to the front end of handwriting, the speech front end is based
on signal processing methods and few techniques are used by most of the
recognition systems. This section focuses on the Mel frequency cepstrum co-
efficients (MFCC) extraction, which is based on techniques shown in other
parts of this book (see in particular Chapter 2 and Appendix B). It is one of
the most widely applied speech processing techniques. Other popular meth-
ods, e.g. the linear prediction coefficients (LPC), can be found in specialized
monographies [39].

Figure 12.3 shows the block diagram of the MFCC extraction, the first
step is the application of a Hamming window (see Section 2.5.3) to the signal.
This step corresponds to the segmentation of the handwriting images and the
window width is typically fixed at 30 ms. The shift between two consecutive
window positions is in general 10 ms. Such values represent a good tradeoff
between the need of being short enough to detect phonemes boundaries and
the need of being long enough to avoid local fluctuations. Both parameters
have been validated through decades of experiments and, although not sup-
ported by any theoretic argument, have been shown empirically to give good
results. The effect of the Hamming window can be observed in Figure 12.4,
the first two plots from above show the raw signal and its convolution with
30 ms wide windows shifted by 50 ms. Each window isolates a segment of the
raw signal which is then used for the following steps of the processing.

The second step of the MFCC extraction is the application of the Fourier
Transform (see Appendix B) to each segment. The number of retained coef-
ficients is 129, another parameter that has no theoretic support, but it has
been shown to be effective through extensive empirical validation. The result
is that the spectrum of the signal, i.e. the distribution of the energy at different
frequencies is available at each window position. The graphical representation
of such an information is called spectrogram and it is depicted in the third plot
of Figure 12.4, the horizontal axis corresponds to the time, while the vertical
one corresponds to the frequencies. A simple observation of the spectrogram
shows that the characteristics of the signal are constant for certain time inter-
vals and change suddenly to reach a different configuration that remain stable
in the following time interval. The stability intervals roughly correspond to
the different phonemes, i.e. to the different articulator configurations used in
the voicing process (see Chapter 2 for more details).



More Spectral Features 

• Spectral centroid 
• Spectral entropy 
• Spectral flux 
• Spectral rolloff 


