Week 4 Audio Analysis 3

Cepstrum

Inverse Fourier Transform of log magnitude spectrum of the signal!

Benefits of Cepstrum

- Log operation emphasizes periodicity of harmonics
- Cepstrum is useful in separating source and the filter
- Mainly used in speech and speaker recognition
- Cepstral coefficients are mostly uncorrelated

Further Audio Analysis

- Audio event detection

 E.g. surveillance, sports events
- Movie content analysis
 E.g. scene classification
- Music information retrieval
 - Tempo detection
 - Timbre detection
 - Rhythm analysis
 - Instrument detection
- Music genre detection
 Rock, classic, Jazz
- Music source separation

Speech Audio Analysis

- Automatic speech recognition

 Translating speech signal to text
- Speaker identification
 Who is talking?
- Speaker verification

 Is this the correct speaker?
- Speaker diarization
 Who spoke when?
- Speech emotion recognition

 Predict speaker's emotional state

Typical Speaker Recognition System

Speaker Models

Text dependent

-Speaker model is trained for particular text, e.g. Khul Ja Sim Sim

• Text Independent –No constraint of speech content

Features

- Cepstrum
 - LPCC
 - MFCC

Popular Speaker Models

- Vector Quantization (VQ)
- Gaussian Mixture Model (GMM)
- Hidden Markov Model (HMM)

Vector Quantization

10000 feature vectors to 16 codewords!

Linde–Buzo–Gray codebook generation

- Guess the cluster centroids C={c₁,c₂,...,c_K};
 REPEAT
 - For each training vector x_j , find the nearest cluster centroid : $q_j = arg min_k ||x_j c_k||$
 - For each cluster k, re-calculate the cluster centroid from the vectors assigned to the cluster: $c_k =$ mean $\{x_j| \ q_j = k\}$
 - UNTIL convergence

Obtaining Codebook

 $S = \{ \mathbf{x}_i \in R^d | i = 1, 2, \dots, n \}$ Input vectors: $C = \{ \mathbf{c}_i \in R^d | j = 1, 2, \dots, K \}$ Initial centroids: $\mathbf{x}_i \in S_a$ if $\|\mathbf{x}_i - \mathbf{c}_a\|_p \leq \|\mathbf{x}_i - \mathbf{c}_i\|_p$ Obtain clusters: $\mathbf{c}_j = \frac{1}{|S_j|} \sum_{\mathbf{x}_i \in S_j} \mathbf{x}_i$ Update centroids: $D_k = \sum_{i=1}^{K} \sum_{\mathbf{x}_i \in S_i} \|\mathbf{x}_i - \mathbf{c}_j\|_p$ Calculate distortion: Repeat until distortion < threshold

The codebook: $C = \{ \mathbf{c}_j \in R^d | j = 1, 2, \dots, K \}$

Classification

- Generate speaker 1 codebook
- Generate speaker 2 codebook
- Take the input vectors and "quantize" using the codebooks
- The codebook with smaller distortion (distance from centroid) wins

Gaussian Mixture Model

Steps:

- Build one GMM for each speaker
- Calculate probability of test feature vector given each GMM
- The highest probability GMM wins

Let's take a single feature (5, 3, 7, 9, 2, 5, 3, 5, 4)

Soln1: Obtain μ and σ of the whole dataset!

Problem: the features may have multiple seaks!

Soln2: Obtain μ and σ for each peak!

$$p(x) = \sum_{j=1}^{M} w_j p_j(x)$$

where
$$p_j(x) = \frac{1}{\sqrt{2\pi\sigma_j^2}} e^{\left\{-\frac{(x-\mu_j)^2}{2\sigma_j^2}\right\}}$$

 $\sum_{j=1}^{M} w_j = 1$

Problem: we have multiple features!

Soln: Use multi-variate Gaussian

2D-Gaussian (3 peaks)

Multi-variate Gaussian

 $\chi \Longrightarrow \vec{\chi}$ Feature vector

 $\mu \Rightarrow \mu$ Mean vector

 σ^2 equivalent \sum Covariance matrix

Probability of a Feature Vector

 $\vec{x} = \{x_1, x_2 \dots x_D\}$

$$p_{j}(\vec{x}) = \frac{1}{(2\pi)^{D/2} |\Sigma_{j}|^{1/2}} \exp\left\{-\frac{1}{2}(\vec{x} - \vec{\mu}_{j})'\Sigma_{j}^{-1}(\vec{x} - \vec{\mu}_{j})\right\}$$

$$p(\vec{x} / S) = \sum_{j=1}^{M} w_j p_j(\vec{x})$$

S = {w_j, \mu_j, \Sigma_j} where j = 1, 2, 3...M

Each Gaussian component models an acoustic class

Speaker Identification

A group of speakers $S = \{1, 2, ..., S\}$ is represented by

GMM' s λ_1 , λ_2 , ..., λ_s

$$\hat{S} = \arg \max_{1 \le k \le S} \Pr(\lambda_k \mid \vec{x}) = \arg \max_{1 \le k \le S} \frac{p(\vec{x} \mid \lambda_k) \Pr(\lambda_k)}{p(\vec{x})}$$

$$\hat{S} = \arg\max_{1 \le k \le S} p(\vec{x} \mid \lambda_k) \xrightarrow{takelog} \hat{S} = \arg\max_{1 \le k \le S} \sum_{j=1}^{M} \log p_j(\vec{x} \mid \lambda_k)$$

$$p(\vec{x} \mid \lambda_k) = \sum_{j=1}^M w_j p_j(\vec{x})$$

Problem

- You are at at a party in a club
- You hear an audio signal (e.g., a song)
- You want to quickly know more about it

How do you say two audio objects are same or similar?

Solution

- 1.Record an excerpt of audio
- 2.Match with your database
- 3.Get the information

Problem

- You cannot compare songs directly
- Inefficient
- Not robust

Obtain fingerprint of the audio and only match fingerprints!

Audio Fingerprinting

()

 Short summary of audio object using a limited number of bits

Fingerprinting Requirements

- 1. The fingerprint should be compact
- 2. It should be discriminative
- 3. It should be robust to usual audio degradations

Shazam uses fingerprinting work by Avery Wang!

Transform audio to spectrogram

Find peaks in the spectrogram using some criteria!

DensityEnergy difference

Finding Peaks

Audio Fingerprint

Fingerprint Matching

A high count indicates match!

More fingerprinting

- Divide into frames (11.6ms)
- Obtain a vector for a set of frames (256)
- Obtain bit vector for each frame (32 bits)
- Compare the bit pattern with reference using Hamming distance