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Cepstrum 
Inverse Fourier Transform of log 

magnitude spectrum of the signal! 
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The cepstrum 
• Definition 

– The cepstrum is defined as the inverse DFT of the log magnitude of the 

DFT of a signal 

𝑐 𝑛 = ℱ−1 log ℱ 𝑥 𝑛  

• where ℱ is the DFT and ℱ−1 is the IDFT 

– For a windowed frame of speech 𝑦 𝑛 , the cepstrum is  
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Benefits of Cepstrum 
•  Log operation emphasizes periodicity of 

harmonics 
•  Cepstrum is useful in separating source and 

the filter 
•  Mainly used in speech and speaker 

recognition 
•  Cepstral coefficients are mostly uncorrelated 



Further Audio Analysis 
•  Audio event detection 
–  E.g. surveillance, sports events 

•  Movie content analysis 
–  E.g. scene classification 

•  Music information retrieval 
–  Tempo detection 
–  Timbre detection 
–  Rhythm analysis 
–  Instrument detection 

•  Music genre detection 
–  Rock, classic, Jazz 

•  Music source separation 



Speech Audio Analysis 
•  Automatic speech recognition 
– Translating speech signal to text 

•  Speaker identification 
– Who is talking? 

•  Speaker verification 
–  Is this the correct speaker? 

•  Speaker diarization 
–   Who spoke when? 

•  Speech emotion recognition 
– Predict speaker’s emotional state 



Typical Speaker Recognition 
System 

Feature  
Extraction 
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Speaker Models 

• Text dependent 
– Speaker model is trained for particular 

text, e.g. Khul Ja Sim Sim 

• Text Independent 
– No constraint of speech content 



Features 
• Cepstrum  
•  LPCC 
•  MFCC 



Popular Speaker Models 

•  Vector Quantization (VQ) 
•  Gaussian Mixture Model (GMM) 
•  Hidden Markov Model (HMM) 



Vector Quantization 

10000 feature vectors to 16 codewords! 



Linde–Buzo–Gray codebook 
generation 

1.  Guess the cluster centroids C={c1,c2,...,cK} ;  
2.  REPEAT 

- For each training vector xj , find the nearest cluster 
centroid : qj = arg mink ||xj - ck|| 
- For each cluster k, re-calculate the cluster centroid 
from the vectors assigned to the cluster: ck= mean {xj| 
qj=k}  
- UNTIL convergence 



Obtaining Codebook 

LBG Algorithm

LBG algorithm is like a K-means clustering algorithm which takes a set of input
vectors S = {xi ∈ Rd| i = 1, 2, . . . , n} as input and generates a representative subset
of vectors C = {cj ∈ Rd| j = 1, 2, . . . , K} with a user specified K << n as output
according to the similarity measure. For the application of Vector Quantization (VQ),
d = 16, K = 256 or 512 are commonly used.

LBG Algorithm

1. Input training vectors S = {xi ∈ Rd| i = 1, 2, · · · , n}.

2. Initiate a codebook C = {cj ∈ Rd| j = 1, 2, · · · , K}.

3. Set D0 = 0 and let k = 0.

4. Classify the n training vectors into K clusters according to xi ∈ Sq if ∥xi −
cq∥p ≤ ∥xi − cj∥p for j ≠ q.

5. Update cluster centers cj, j = 1, 2, · · · , K by cj = 1

|Sj |

∑
xi∈Sj

xi.

6. Set k ← k + 1 and compute the distortion Dk =
∑K

j=1

∑
xi∈Sj

∥xi − cj∥p.

7. If (Dk−1 −Dk)/Dk > ϵ (a small number), repeat steps 4 ∼ 6.

8. Output the codebook C = {cj ∈ Rd| j = 1, 2, · · · , K},

The convergence of LBG algorithm depends on the initial codebook C, the distortion
Dk, and the threshold ϵ, in implementation, we need to provide a maximum number of
iterations to guarantee the convergence.
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Input vectors: 

Initial centroids: 

Obtain clusters:  

Update centroids: 

Calculate distortion: 

The codebook: 

Repeat until distortion < threshold   



Classification 
•  Generate speaker 1 codebook 
•  Generate speaker 2 codebook 
•  Take the input vectors and “quantize” 

using the codebooks 
•  The codebook with smaller distortion 

(distance from centroid) wins 



Gaussian Mixture 
Model 

44

Carl Friedrich Gauss invented the normal distribution in 1809 as 
a way to rationalize the method of least squares.

Introduction
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Carl Friedrich Gauss invented the normal distribution in 1809 as 
a way to rationalize the method of least squares.

Introduction

μ	

σ	



Steps: 
• Build one GMM for each speaker 

• Calculate probability of test 
feature vector given each GMM 

•  The highest probability GMM 
wins 



Let’s take a single 
feature 

(5, 3, 7, 9, 2, 5, 3, 5, 4) 



Soln1: Obtain μ and σ 
of the whole dataset! 

p(x) = 1
2πσ 2

e
−
(x−µ )2

2σ 2
⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪



Problem: the features 
may have multiple 

peaks! 

6

What is a Gaussian mixture model?

Examples:

d=1: d=2:

The probability given in a mixture of K Gaussians is:

∑
=

Σ⋅=
K

j
jjj xΝwxp

1

),|()( μ

Gaussian.  th  the  of  (weight)  yprobabilit  prior  the is    where jwj

∑
=

=
K

j
jw

1

1 10 ≤≤ jwand

x 



Soln2: Obtain μ and σ 
for each peak! 

p(x) = wj pj (x)
j=1

M

∑

pj (x) =
1
2πσ j

2
e

−
(x−µ j )

2

2σ j
2

⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪

where 

wj =1
j=1

M

∑



Problem: we have 
multiple features! 
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Soln: Use multi-variate 
Gaussian 



2D-Gaussian (1 peak) 

5

For d dimensions, the Gaussian distribution of a vector x =(x1, x2, …,xd)T
is defined by:

⎟
⎠
⎞

⎜
⎝
⎛ −Σ−−

Σ
=Σ − )()(

2
1

exp
||)2(

1
),|( 1

2/ μμ
π

μ xxxΝ T
d

What is a Gaussian?

Gaussian. the of matrix covariancethe is  and mean  the  is    where Σμ

Example:   T)0,0(=μ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Σ

00.130.0
30.025.0

x1 x2 



6

What is a Gaussian mixture model?

Examples:

d=1: d=2:

The probability given in a mixture of K Gaussians is:

∑
=

Σ⋅=
K

j
jjj xΝwxp

1

),|()( μ

Gaussian.  th  the  of  (weight)  yprobabilit  prior  the is    where jwj

∑
=

=
K

j
jw

1

1 10 ≤≤ jwand

2D-Gaussian (3 peaks) 

x1 x2 



Multi-variate Gaussian 

x⇒ !x
µ⇒

!
µ

σ 2  equivalent ∑

Feature vector 

Mean vector 

Covariance matrix 



Probability of a Feature Vector 

pj (
!x) = 1

(2π )D 2 Σ j
1 2 exp −

1
2
(!x − !µ j )'Σ j

−1(!x − !µ j )
⎫
⎬
⎭

⎧
⎨
⎩

p(!x / S ) = wj pj (
!x)

j=1

M

∑

S = {wj,µ j,Σ j}  where j =1, 2,3...M

!x = {x1, x2...xD}
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Speaker  k 

1µ

1Σ

2µ

2Σ

1p 2p

…………………… 

iµ

iΣ

ip

Acoustic 
class 

Each Gaussian component 
models an  acoustic class 
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Speaker Identification 
 

A group of speakers S = {1,2,…,S} is represented by 

GMM’s λ1, λ2, …, λs 

Ŝ = arg max
1≤k≤S

Pr(λk |
!x) = argmax

1≤k≤S

p(!x | λk )Pr(λk )
p(!x)

Ŝ = argmax
1≤k≤S

p(!x | λk ) Ŝ = argmax
1≤k≤S

log
j=1

M

∑ pj (
!x | λk )

p(!x | λk ) = wj pj (
!x )

j=1

M

∑

⎯⎯ →⎯ logtake



Problem 
•  You are at at a party in a club 
•  You hear an audio signal (e.g., a song) 
•  You want to quickly know more about it 



How do you say two 
audio objects are 
same or similar? 



Solution 
1. Record an excerpt of audio 
2. Match with your database 
3. Get the information 



Problem 
• You cannot compare songs 

directly 
•  Inefficient 
• Not robust 



Obtain fingerprint of 
the audio and only 
match fingerprints! 

Requirements 

• Audio fingerprints have to be: 
– Compact (= small storage and fast search) 
– Discriminative (= less false positives) 
– Robust (= invariance to audio degradations) 

Zafar Rafii, Winter 2014 7 



Audio Fingerprinting 
•  Short summary of audio object using a 

limited number of bits 

What is an audio fingerprint? 

• Short summary of an audio object using a 
limited number of bits. 

 
 
 
 
 
 

– Example: i-vectors 

F 

1 
0 
1 
1 
0
… 

0	
1	
0	
0	
1	
1	
1	
0	



Fingerprinting Requirements 

1. The fingerprint should be compact 
2.  It should be discriminative 
3.  It should be robust to usual audio 

degradations 



Shazam uses 
fingerprinting work 

by Avery Wang! 



Transform audio to 
spectrogram 

Fingerprinting 

• The audio signal (e.g., a song) is first 
transformed into a spectrogram 

Zafar Rafii, Winter 2014 12 

Spectrogram 



Find peaks in the 
spectrogram using some 

criteria! 

•  Density 
•  Energy difference 



Finding Peaks 

Fingerprinting 

• Peak locations in the spectrogram are 
identified given some criteria (e.g., density) 

Zafar Rafii, Winter 2014 13 

Spectrogram 



Audio Fingerprint 

Fingerprinting 

• This leads to an audio fingerprint that is both 
compact and robust to audio degradations 

Zafar Rafii, Winter 2014 14 

Fingerprint 



Fingerprint Matching 
Matching 

• A fingerprint is extracted from the query and 
compared to the fingerprints of the references 

Zafar Rafii, Winter 2014 16 

Fingerprint of a reference Fingerprint of the query 



Matching 

• The query fingerprint is shifted along time 
against every reference fingerprint 

Zafar Rafii, Winter 2014 17 



Matching 

• The number of peaks that are matching is 
counted and saved for every possible shift 

Zafar Rafii, Winter 2014 18 



Matching 

• The number of peaks that are matching is 
counted and saved for every possible shift 

Zafar Rafii, Winter 2014 19 



A high count 
indicates match! 

Matching 

• A high count indicates a match, and the 
corresponding reference is identified 

Zafar Rafii, Winter 2014 21 



More fingerprinting 
•  Divide into frames (11.6ms) 
•  Obtain a vector for a set of frames (256) 
•  Obtain bit vector for each frame (32 bits) 
•  Compare the bit pattern with reference 

using Hamming distance 


