
Week 4
Audio Analysis 3

Cepstrum
Inverse Fourier Transform of log

magnitude spectrum of the signal!

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 2

The cepstrum
• Definition

– The cepstrum is defined as the inverse DFT of the log magnitude of the

DFT of a signal

𝑐 𝑛 = ℱ−1 log ℱ 𝑥 𝑛

• where ℱ is the DFT and ℱ−1 is the IDFT

– For a windowed frame of speech 𝑦 𝑛 , the cepstrum is

𝑐 𝑛 = log 𝑥 𝑛 𝑒−𝑗2𝜋𝑁 𝑘𝑛
𝑁−1

𝑛=0
𝑒𝑗2𝜋𝑁 𝑘𝑛

𝑁−1

𝑛=0

DFT log IDFT 𝑥 𝑛

𝑋 𝑘 𝑋 𝑘

𝑐 𝑛

Benefits of Cepstrum
•  Log operation emphasizes periodicity of

harmonics
•  Cepstrum is useful in separating source and

the filter
•  Mainly used in speech and speaker

recognition
•  Cepstral coefficients are mostly uncorrelated

Further Audio Analysis
•  Audio event detection
–  E.g. surveillance, sports events

•  Movie content analysis
–  E.g. scene classification

•  Music information retrieval
–  Tempo detection
–  Timbre detection
–  Rhythm analysis
–  Instrument detection

•  Music genre detection
–  Rock, classic, Jazz

•  Music source separation

Speech Audio Analysis
•  Automatic speech recognition
– Translating speech signal to text

•  Speaker identification
– Who is talking?

•  Speaker verification
–  Is this the correct speaker?

•  Speaker diarization
–  Who spoke when?

•  Speech emotion recognition
– Predict speaker’s emotional state

Typical Speaker Recognition
System

Feature
Extraction

Speech
Samples

Feature
Vector

Score
Pattern

Matching

Speaker
Model

Feature
Extraction

Speech
Signal

Speaker Models

• Text dependent
– Speaker model is trained for particular

text, e.g. Khul Ja Sim Sim

• Text Independent
– No constraint of speech content

Features
• Cepstrum
•  LPCC
•  MFCC

Popular Speaker Models

•  Vector Quantization (VQ)
•  Gaussian Mixture Model (GMM)
•  Hidden Markov Model (HMM)

Vector Quantization

10000 feature vectors to 16 codewords!

Linde–Buzo–Gray codebook
generation

1.  Guess the cluster centroids C={c1,c2,...,cK} ;
2.  REPEAT

- For each training vector xj , find the nearest cluster
centroid : qj = arg mink ||xj - ck||
- For each cluster k, re-calculate the cluster centroid
from the vectors assigned to the cluster: ck= mean {xj|
qj=k}
- UNTIL convergence

Obtaining Codebook

LBG Algorithm

LBG algorithm is like a K-means clustering algorithm which takes a set of input
vectors S = {xi ∈ Rd| i = 1, 2, . . . , n} as input and generates a representative subset
of vectors C = {cj ∈ Rd| j = 1, 2, . . . , K} with a user specified K << n as output
according to the similarity measure. For the application of Vector Quantization (VQ),
d = 16, K = 256 or 512 are commonly used.

LBG Algorithm

1. Input training vectors S = {xi ∈ Rd| i = 1, 2, · · · , n}.

2. Initiate a codebook C = {cj ∈ Rd| j = 1, 2, · · · , K}.

3. Set D0 = 0 and let k = 0.

4. Classify the n training vectors into K clusters according to xi ∈ Sq if ∥xi −
cq∥p ≤ ∥xi − cj∥p for j ≠ q.

5. Update cluster centers cj, j = 1, 2, · · · , K by cj = 1

|Sj |

∑
xi∈Sj

xi.

6. Set k ← k + 1 and compute the distortion Dk =
∑K

j=1

∑
xi∈Sj

∥xi − cj∥p.

7. If (Dk−1 −Dk)/Dk > ϵ (a small number), repeat steps 4 ∼ 6.

8. Output the codebook C = {cj ∈ Rd| j = 1, 2, · · · , K},

The convergence of LBG algorithm depends on the initial codebook C, the distortion
Dk, and the threshold ϵ, in implementation, we need to provide a maximum number of
iterations to guarantee the convergence.

LBG Algorithm

LBG algorithm is like a K-means clustering algorithm which takes a set of input
vectors S = {xi ∈ Rd| i = 1, 2, . . . , n} as input and generates a representative subset
of vectors C = {cj ∈ Rd| j = 1, 2, . . . , K} with a user specified K << n as output
according to the similarity measure. For the application of Vector Quantization (VQ),
d = 16, K = 256 or 512 are commonly used.

LBG Algorithm

1. Input training vectors S = {xi ∈ Rd| i = 1, 2, · · · , n}.

2. Initiate a codebook C = {cj ∈ Rd| j = 1, 2, · · · , K}.

3. Set D0 = 0 and let k = 0.

4. Classify the n training vectors into K clusters according to xi ∈ Sq if ∥xi −
cq∥p ≤ ∥xi − cj∥p for j ≠ q.

5. Update cluster centers cj, j = 1, 2, · · · , K by cj = 1

|Sj |

∑
xi∈Sj

xi.

6. Set k ← k + 1 and compute the distortion Dk =
∑K

j=1

∑
xi∈Sj

∥xi − cj∥p.

7. If (Dk−1 −Dk)/Dk > ϵ (a small number), repeat steps 4 ∼ 6.

8. Output the codebook C = {cj ∈ Rd| j = 1, 2, · · · , K},

The convergence of LBG algorithm depends on the initial codebook C, the distortion
Dk, and the threshold ϵ, in implementation, we need to provide a maximum number of
iterations to guarantee the convergence.

LBG Algorithm

LBG algorithm is like a K-means clustering algorithm which takes a set of input
vectors S = {xi ∈ Rd| i = 1, 2, . . . , n} as input and generates a representative subset
of vectors C = {cj ∈ Rd| j = 1, 2, . . . , K} with a user specified K << n as output
according to the similarity measure. For the application of Vector Quantization (VQ),
d = 16, K = 256 or 512 are commonly used.

LBG Algorithm

1. Input training vectors S = {xi ∈ Rd| i = 1, 2, · · · , n}.

2. Initiate a codebook C = {cj ∈ Rd| j = 1, 2, · · · , K}.

3. Set D0 = 0 and let k = 0.

4. Classify the n training vectors into K clusters according to xi ∈ Sq if ∥xi −
cq∥p ≤ ∥xi − cj∥p for j ≠ q.

5. Update cluster centers cj, j = 1, 2, · · · , K by cj = 1

|Sj |

∑
xi∈Sj

xi.

6. Set k ← k + 1 and compute the distortion Dk =
∑K

j=1

∑
xi∈Sj

∥xi − cj∥p.

7. If (Dk−1 −Dk)/Dk > ϵ (a small number), repeat steps 4 ∼ 6.

8. Output the codebook C = {cj ∈ Rd| j = 1, 2, · · · , K},

The convergence of LBG algorithm depends on the initial codebook C, the distortion
Dk, and the threshold ϵ, in implementation, we need to provide a maximum number of
iterations to guarantee the convergence.

LBG Algorithm

LBG algorithm is like a K-means clustering algorithm which takes a set of input
vectors S = {xi ∈ Rd| i = 1, 2, . . . , n} as input and generates a representative subset
of vectors C = {cj ∈ Rd| j = 1, 2, . . . , K} with a user specified K << n as output
according to the similarity measure. For the application of Vector Quantization (VQ),
d = 16, K = 256 or 512 are commonly used.

LBG Algorithm

1. Input training vectors S = {xi ∈ Rd| i = 1, 2, · · · , n}.

2. Initiate a codebook C = {cj ∈ Rd| j = 1, 2, · · · , K}.

3. Set D0 = 0 and let k = 0.

4. Classify the n training vectors into K clusters according to xi ∈ Sq if ∥xi −
cq∥p ≤ ∥xi − cj∥p for j ≠ q.

5. Update cluster centers cj, j = 1, 2, · · · , K by cj = 1

|Sj |

∑
xi∈Sj

xi.

6. Set k ← k + 1 and compute the distortion Dk =
∑K

j=1

∑
xi∈Sj

∥xi − cj∥p.

7. If (Dk−1 −Dk)/Dk > ϵ (a small number), repeat steps 4 ∼ 6.

8. Output the codebook C = {cj ∈ Rd| j = 1, 2, · · · , K},

The convergence of LBG algorithm depends on the initial codebook C, the distortion
Dk, and the threshold ϵ, in implementation, we need to provide a maximum number of
iterations to guarantee the convergence.

LBG Algorithm

LBG algorithm is like a K-means clustering algorithm which takes a set of input
vectors S = {xi ∈ Rd| i = 1, 2, . . . , n} as input and generates a representative subset
of vectors C = {cj ∈ Rd| j = 1, 2, . . . , K} with a user specified K << n as output
according to the similarity measure. For the application of Vector Quantization (VQ),
d = 16, K = 256 or 512 are commonly used.

LBG Algorithm

1. Input training vectors S = {xi ∈ Rd| i = 1, 2, · · · , n}.

2. Initiate a codebook C = {cj ∈ Rd| j = 1, 2, · · · , K}.

3. Set D0 = 0 and let k = 0.

4. Classify the n training vectors into K clusters according to xi ∈ Sq if ∥xi −
cq∥p ≤ ∥xi − cj∥p for j ≠ q.

5. Update cluster centers cj, j = 1, 2, · · · , K by cj = 1

|Sj |

∑
xi∈Sj

xi.

6. Set k ← k + 1 and compute the distortion Dk =
∑K

j=1

∑
xi∈Sj

∥xi − cj∥p.

7. If (Dk−1 −Dk)/Dk > ϵ (a small number), repeat steps 4 ∼ 6.

8. Output the codebook C = {cj ∈ Rd| j = 1, 2, · · · , K},

The convergence of LBG algorithm depends on the initial codebook C, the distortion
Dk, and the threshold ϵ, in implementation, we need to provide a maximum number of
iterations to guarantee the convergence.

LBG Algorithm

LBG algorithm is like a K-means clustering algorithm which takes a set of input
vectors S = {xi ∈ Rd| i = 1, 2, . . . , n} as input and generates a representative subset
of vectors C = {cj ∈ Rd| j = 1, 2, . . . , K} with a user specified K << n as output
according to the similarity measure. For the application of Vector Quantization (VQ),
d = 16, K = 256 or 512 are commonly used.

LBG Algorithm

1. Input training vectors S = {xi ∈ Rd| i = 1, 2, · · · , n}.

2. Initiate a codebook C = {cj ∈ Rd| j = 1, 2, · · · , K}.

3. Set D0 = 0 and let k = 0.

4. Classify the n training vectors into K clusters according to xi ∈ Sq if ∥xi −
cq∥p ≤ ∥xi − cj∥p for j ≠ q.

5. Update cluster centers cj, j = 1, 2, · · · , K by cj = 1

|Sj |

∑
xi∈Sj

xi.

6. Set k ← k + 1 and compute the distortion Dk =
∑K

j=1

∑
xi∈Sj

∥xi − cj∥p.

7. If (Dk−1 −Dk)/Dk > ϵ (a small number), repeat steps 4 ∼ 6.

8. Output the codebook C = {cj ∈ Rd| j = 1, 2, · · · , K},

The convergence of LBG algorithm depends on the initial codebook C, the distortion
Dk, and the threshold ϵ, in implementation, we need to provide a maximum number of
iterations to guarantee the convergence.

LBG Algorithm

LBG algorithm is like a K-means clustering algorithm which takes a set of input
vectors S = {xi ∈ Rd| i = 1, 2, . . . , n} as input and generates a representative subset
of vectors C = {cj ∈ Rd| j = 1, 2, . . . , K} with a user specified K << n as output
according to the similarity measure. For the application of Vector Quantization (VQ),
d = 16, K = 256 or 512 are commonly used.

LBG Algorithm

1. Input training vectors S = {xi ∈ Rd| i = 1, 2, · · · , n}.

2. Initiate a codebook C = {cj ∈ Rd| j = 1, 2, · · · , K}.

3. Set D0 = 0 and let k = 0.

4. Classify the n training vectors into K clusters according to xi ∈ Sq if ∥xi −
cq∥p ≤ ∥xi − cj∥p for j ≠ q.

5. Update cluster centers cj, j = 1, 2, · · · , K by cj = 1

|Sj |

∑
xi∈Sj

xi.

6. Set k ← k + 1 and compute the distortion Dk =
∑K

j=1

∑
xi∈Sj

∥xi − cj∥p.

7. If (Dk−1 −Dk)/Dk > ϵ (a small number), repeat steps 4 ∼ 6.

8. Output the codebook C = {cj ∈ Rd| j = 1, 2, · · · , K},

The convergence of LBG algorithm depends on the initial codebook C, the distortion
Dk, and the threshold ϵ, in implementation, we need to provide a maximum number of
iterations to guarantee the convergence.

Input vectors:

Initial centroids:

Obtain clusters:

Update centroids:

Calculate distortion:

The codebook:

Repeat until distortion < threshold

Classification
•  Generate speaker 1 codebook
•  Generate speaker 2 codebook
•  Take the input vectors and “quantize”

using the codebooks
•  The codebook with smaller distortion

(distance from centroid) wins

Gaussian Mixture
Model

44

Carl Friedrich Gauss invented the normal distribution in 1809 as
a way to rationalize the method of least squares.

Introduction

44

Carl Friedrich Gauss invented the normal distribution in 1809 as
a way to rationalize the method of least squares.

Introduction

μ	

σ	

Steps:
• Build one GMM for each speaker

• Calculate probability of test
feature vector given each GMM

•  The highest probability GMM
wins

Let’s take a single
feature

(5, 3, 7, 9, 2, 5, 3, 5, 4)

Soln1: Obtain μ and σ
of the whole dataset!

p(x) = 1
2πσ 2

e
−
(x−µ)2

2σ 2
⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪

Problem: the features
may have multiple

peaks!

6

What is a Gaussian mixture model?

Examples:

d=1: d=2:

The probability given in a mixture of K Gaussians is:

∑
=

Σ⋅=
K

j
jjj xΝwxp

1

),|()(μ

Gaussian. th the of (weight) yprobabilit prior the is where jwj

∑
=

=
K

j
jw

1

1 10 ≤≤ jwand

x

Soln2: Obtain μ and σ
for each peak!

p(x) = wj pj (x)
j=1

M

∑

pj (x) =
1
2πσ j

2
e

−
(x−µ j)

2

2σ j
2

⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪

where

wj =1
j=1

M

∑

Problem: we have
multiple features!
4
2
3
5
2
9

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

4
2
5
7
4
3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

6
5
2
8
4
6

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

4
5
2
6
7
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

3
4
5
2
7
5

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

6
5
2
8
4
6

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

4
5
2
6
7
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

3
4
5
2
7
5

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

6
5
2
8
4
6

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

4
5
2
6
7
4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

3
4
5
2
7
5

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

Soln: Use multi-variate
Gaussian

2D-Gaussian (1 peak)

5

For d dimensions, the Gaussian distribution of a vector x =(x1, x2, …,xd)T
is defined by:

⎟
⎠
⎞

⎜
⎝
⎛ −Σ−−

Σ
=Σ −)()(

2
1

exp
||)2(

1
),|(1

2/ μμ
π

μ xxxΝ T
d

What is a Gaussian?

Gaussian. the of matrix covariancethe is and mean the is where Σμ

Example: T)0,0(=μ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Σ

00.130.0
30.025.0

x1 x2

6

What is a Gaussian mixture model?

Examples:

d=1: d=2:

The probability given in a mixture of K Gaussians is:

∑
=

Σ⋅=
K

j
jjj xΝwxp

1

),|()(μ

Gaussian. th the of (weight) yprobabilit prior the is where jwj

∑
=

=
K

j
jw

1

1 10 ≤≤ jwand

2D-Gaussian (3 peaks)

x1 x2

Multi-variate Gaussian

x⇒ !x
µ⇒

!
µ

σ 2 equivalent ∑

Feature vector

Mean vector

Covariance matrix

Probability of a Feature Vector

pj (
!x) = 1

(2π)D 2 Σ j
1 2 exp −

1
2
(!x − !µ j)'Σ j

−1(!x − !µ j)
⎫
⎬
⎭

⎧
⎨
⎩

p(!x / S) = wj pj (
!x)

j=1

M

∑

S = {wj,µ j,Σ j} where j =1, 2,3...M

!x = {x1, x2...xD}

26	

Speaker k

1µ

1Σ

2µ

2Σ

1p 2p

……………………

iµ

iΣ

ip

Acoustic
class

Each Gaussian component
models an acoustic class

27	

Speaker Identification

A group of speakers S = {1,2,…,S} is represented by

GMM’s λ1, λ2, …, λs

Ŝ = arg max
1≤k≤S

Pr(λk |
!x) = argmax

1≤k≤S

p(!x | λk)Pr(λk)
p(!x)

Ŝ = argmax
1≤k≤S

p(!x | λk) Ŝ = argmax
1≤k≤S

log
j=1

M

∑ pj (
!x | λk)

p(!x | λk) = wj pj (
!x)

j=1

M

∑

⎯⎯ →⎯ logtake

Problem
•  You are at at a party in a club
•  You hear an audio signal (e.g., a song)
•  You want to quickly know more about it

How do you say two
audio objects are
same or similar?

Solution
1. Record an excerpt of audio
2. Match with your database
3. Get the information

Problem
• You cannot compare songs

directly
•  Inefficient
• Not robust

Obtain fingerprint of
the audio and only
match fingerprints!

Requirements

• Audio fingerprints have to be:
– Compact (= small storage and fast search)
– Discriminative (= less false positives)
– Robust (= invariance to audio degradations)

Zafar Rafii, Winter 2014 7

Audio Fingerprinting
•  Short summary of audio object using a

limited number of bits

What is an audio fingerprint?

• Short summary of an audio object using a
limited number of bits.

– Example: i-vectors

F

1
0
1
1
0
…

0	
1	
0	
0	
1	
1	
1	
0	

Fingerprinting Requirements

1. The fingerprint should be compact
2.  It should be discriminative
3.  It should be robust to usual audio

degradations

Shazam uses
fingerprinting work

by Avery Wang!

Transform audio to
spectrogram

Fingerprinting

• The audio signal (e.g., a song) is first
transformed into a spectrogram

Zafar Rafii, Winter 2014 12

Spectrogram

Find peaks in the
spectrogram using some

criteria!

•  Density
•  Energy difference

Finding Peaks

Fingerprinting

• Peak locations in the spectrogram are
identified given some criteria (e.g., density)

Zafar Rafii, Winter 2014 13

Spectrogram

Audio Fingerprint

Fingerprinting

• This leads to an audio fingerprint that is both
compact and robust to audio degradations

Zafar Rafii, Winter 2014 14

Fingerprint

Fingerprint Matching
Matching

• A fingerprint is extracted from the query and
compared to the fingerprints of the references

Zafar Rafii, Winter 2014 16

Fingerprint of a reference Fingerprint of the query

Matching

• The query fingerprint is shifted along time
against every reference fingerprint

Zafar Rafii, Winter 2014 17

Matching

• The number of peaks that are matching is
counted and saved for every possible shift

Zafar Rafii, Winter 2014 18

Matching

• The number of peaks that are matching is
counted and saved for every possible shift

Zafar Rafii, Winter 2014 19

A high count
indicates match!

Matching

• A high count indicates a match, and the
corresponding reference is identified

Zafar Rafii, Winter 2014 21

More fingerprinting
•  Divide into frames (11.6ms)
•  Obtain a vector for a set of frames (256)
•  Obtain bit vector for each frame (32 bits)
•  Compare the bit pattern with reference

using Hamming distance

