
Week 7
Sentiment Analysis, Topic

Detection

Reference	and	Slide	Source:	ChengXiang	Zhai	and	Sean	Massung.	2016.	Text	Data	Management	and	Analysis:	a	Practical	Introduction	
to	Information	Retrieval	and	Text	Mining.	Association	for	Computing	Machinery	and	Morgan	&	Claypool,	New	York,	NY,	USA.				

Multimedia	
Systems	

Sensory	data	
(Video,	Audio,	etc.)	

Web	data	(Text)	
(OSN,	News,	etc.)	

User	data	
(User	attributes,	Preferences,	etc.)	

Opinions

Text is generated by humans, therefore
rich in subjective information! 390 Chapter 18 Opinion Mining and Sentiment Analysis

Real world

Observed
world

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum, dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

nisi ut a q p

 Excepteur sint occaecat cupidatat non proide ,

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

idatat non proident, sunt in culpa qui

Lorem ipsum, dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.
Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Perceive

(perspective)

Record Output

Express

(English) Subjective and
opinion rich!

Text data

Video data

Figure 18.1 Objective vs. Subjective Sensors.

In contrast: Objective statement or factual statement
(can be proved right/wrong)

Opinion holder

Opinion targetDepends on culture,
background, and context

Opinion ≈ a subjective statement describing what a person

believes or thinks about something

Figure 18.2 Definition of “opinion.”

background, and the context in general. This thought process shows that there are
multiple elements that we need to include in order to characterize opinions.

The next logical question is “What’s a basic opinion representation?” It should
include at least three elements. First, it has to specify who the opinion holder
is. Second, it must also specify the target, or what the opinion is about. Third,
of course, we want the opinion content. If you can identify these, we get a basic
understanding of opinions. If we want to understand further, we need an enriched
opinion representation. That means we also want to understand, for example,
the context of the opinion and in what situation the opinion was expressed. We
would also like to understand the opinion sentiment; i.e., whether it is a positive
or negative feeling.

Applications
•  Decision support – whether to go for the

movie or not?
•  Understanding human preferences
•  Advertising
•  Recommendations
•  Business intelligence – product feature

evaluation

What is an opinion?
A subjective statement describing
what a person thinks or believes

about something!

“Chomu is the best
town in India”

• Something = Chomu
• Belief = Best town!

Naam Shabana Reviews
•  Awesome, I saw twice......
•  Unbelievably disappointing
•  A good movie, if seen baby previously

then it must be watched, Role of Tapsee
Pannu is really appreciable.

•  Instead of Naam Shabana they would
have made Sar Dabaana ya jo dikhaye
uska gala dabana

Opinion is generally analyzed
in terms of sentiment, e.g.,
positive, negative & neutral!

Sentiment analysis has
many other names
•  Opinion extraction
•  Opinion mining
•  Sentiment mining
•  Subjectivity analysis

Opinion Mining Tasks
• Detecting opinion holder
• Detecting opinion target
• Detecting opinion sentiment

Sentiment Analysis
•  Simplest task:
–  Is the attitude of this text positive or

negative?

•  More complex:
– Rate the attitude of this text from 1 to 5

•  Advanced:
– Detect the target, source, or complex attitude

types

Sentiment Analysis
Assumes all other parameters

are knows!
 E.g. in teaching feedback,

students writing about
instructor.

Feature Selection

Choose all words or
only adjectives?

• Generally all words turns out to
work better
•  Experiments

Word occurrence may matter
more than word frequency

•  The occurrence of the word
fantastic tells us a lot
•  The fact that it occurs 5 times

may not tell us much more

How to handle negation?

I didn’t like this movie
vs

I really like this movie

Add NOT_ to every word between
negation and following punctuation:

didn’t like this movie , but I

didn’t NOT_like NOT_this NOT_movie but I

n-grams
•  Character n-grams: sequences of n

adjacent characters treated as a unit
•  Word n-grams: sequences of n adjacent

words treated as a unit
•  n-grams generally move by 1 unit

Character n-grams example
 •  Text: “student”

•  2-grams
– st
–  tu
– ud
– de
– en
– nt

Character n-grams example
 •  Text: “In this paper”

•  4-grams
–  In_t
–  n_th
–  _thi
–  this
–  his_
–  |is_p
–  |s_pa
–  |_pap
–  pape
–  aper

Word n-grams example
•  Text: “The cow jumps over the moon”
•  2-grams
–  the cow
– cow jumps
–  jumps over
– over the
–  the moon

n=1 - unigram
n=2 - bigram
n=3 - trigram

What happens to n-grams when
when one character is
misspelled in word?

Assignment Vs Asignment

n-grams are robust to grammatical
errors!

Word Vs Character n-grams,
which one is more sparse?

Character n-grams are much less
in number than word n-grams.

Other n-grams
•  n-grams of PoS Tags
– E.g. adjective followed by a noun

•  n-gram of word classes
– place, names, people

•  n-gram of word topics
– politics, technical

Analysis Methods

Classification/Regression

•  Support Vector Machines
•  Naïve Bayse Classifier
•  Logistic Regression
•  Ordinal logistic regression

Logistic Regression for
Binary Classification

log p(y =1| X)
p(y = 0 | X)

= log p(y =1| X)
1− p(y =1| X)

=α j + xi
i=1

M

∑ βi

Rating Detection

•  Sentiment is generally measured on a
scale from positive to negative with other
labels in-between.

•  Logistic regression is improvised to
analyze multi-class classification, e.g.
ratings from 1 to 5.

Multi-level Logistic
Regression 398 Chapter 18 Opinion Mining and Sentiment Analysis

p(r ≥ j|X) =

p(r ≥ k|X) > 0.5?

eαj+∑M
i=1xiβji

—
eαj+∑M

i=1xiβji + 1

No

Yes
r = k

r = 2

r = 1

j = k, k – 1, …, 2

After training k – 1
Logistic regression classifiers r = k – 1p(r ≥ k – 1|X) > 0.5?

No

…

Yes

p(r ≥ 2|X) > 0.5?

No

Yes

Text object: X = (x1, x2, …, xM), xi 2 <
Rating: r 2 {1, 2, …, k}

Figure 18.6 Multi-level logistic regression for sentiment analysis: prediction of ratings.

With this modification, each classifier needs a different set of parameters, yield-
ing many more parameters overall. We will index the logistic regression classifiers
by an index j , which corresponds to a rating level. This is to make the notation more
consistent with what we show in the ordinal logistic regression. So, we now have
k − 1 regular logistic regression classifiers, each with its own set of parameters.
With this approach, we can now predict ratings, as shown in Figure 18.6 .

After we have separately trained these k − 1 logistic regression classifiers, we can
take a new instance and then invoke classifiers sequentially to make the decision.
First, we look at the classifier that corresponds to the rating level k. This classifier
will tell us whether this object should have a rating of k or not. If the probability
according to this logistic regression classifier is larger than 0.5, we’re going to say
yes, the rating is k. If it’s less than 0.5, we need to invoke the next classifier, which
tells us whether it’s at least k − 1. We continue to invoke the classifiers until we hit
the end when we need to decide whether it’s 2 or 1.

Unfortunately, such a strategy is not an optimal way of solving this problem.
Specifically, there are two issues with this approach. The first problem is that there
are simply too many parameters. For each classifier, we have M + 1 parameters with
k − 1 classifiers all together, so the total number of parameters is (k − 1) . (M + 1).
When a classifier has many parameters, we would in general need more training
data to help us decide the optimal parameters of such a complex model.

The second problem is that these k − 1 classifiers are not really independent.
We know that, in general, words that are positive would make the rating higher for
any of these classifiers, so we should be able to take advantage of this fact. This is

Problems
• Too many parameters
• Classifiers are not not really

independent

Ordinal Logistic Regression
•  Assume β parameters to be the same for

all classifiers
•  Keel α different for each classifier
•  Hence, M+K-1 parameters in total

18.2 Ordinal Regression 399

Classifier 1

p(r ≥ j|X) = eαj+∑M
i=1xiβi

—
eαj+∑M

i=1xiβi + 1

How many parameters are there in total?

 → Share training data

Key idea: 8i = 1, …, M, 8j = 3, …, k, βji = βj–1i

 → Reduce number of parameters

M + k – 1

= log log = αj + ∑M
i=1xiβi βi 2 <

p(Yj = 1|X)
—p(Yj = 0|X)

p(r ≥ j|X)
—1 – p(r ≥ j|X)Rating

Classifier 2

Classifier k – 1

k – 1

k – 2
…

2

1

k

Figure 18.7 The idea of ordinal logistic regression.

precisely the idea of ordinal logistic regression, which is an improvement over the
k − 1 independent logistic regression classifiers, as shown in Figure 18.7.

The improvement is to tie the β parameters together; that means we are going
to assume the β values are the same for all the k − 1 classifiers. This encodes our
intuition that positive words (in general) would make a higher rating more likely.
In fact, this would allow us to have two benefits. One is to reduce the number of
parameters significantly. The other is to allow us to share the training data amongst
all classifiers since the parameters are the same. In effect, we have more data to help
us choose good β values.

The resulting formula would look very similar to what we’ve seen before, only
now the β parameter has just one index that corresponds to a single feature; it
no longer has the other indices that correspond to rating levels. However, each
classifier still has a distinct predicted rating value. Of course, this value is needed
to predict the different rating levels. So αj is different since it depends on j , but the
rest of the parameters (the βi’s) are the same. We now have M + k − 1 parameters.

It turns out that with this idea of tying all the parameters, we end up having a
similar way to make decisions, as shown in Figure 18.8.

More specifically, the criteria whether the predictor probabilities are at least 0.5
or above is equivalent to whether the score of the object is larger than or equal to αk.
The scoring function is just taking a linear combination of all the features with the β

values. This means now we can simply make a rating decision by looking at the value
of this scoring function and seeing which bracket it falls into. In this approach,
we’re going to score the object by using the features and trained parameter values.

More Sentiments
•  Emotion – angry, sad, ashamed…
•  Mood – cheerful, depressed, irritable...
•  Interpersonal stances – friendly, cold...
•  Attitudes – loving, hating...
•  Personality traits – introvert, extrovert...

Topic detection: Given a text
document, find main topic of the

document cover?

35	

1.  I like to eat broccoli and bananas.
2.  My sister adopted a kitten yesterday.
3.  Look at this cute hamster munching on a

piece of broccoli.

Topic detection has two
main tasks

•  Discover k topics covered across all
documents

•  Measure individual topic coverage by
each document

Idea: choose individual
terms as topics!

E.g. Sports, Travel, Food

37	

Terms can be chosen
based on TF or TF-

IDF ranking!

38	

•  Problem: The top few terms can be
similar or even synonym

•  Solution: Go down the ranking and

choose the terms that are different
from the already chosen terms

39	

Maximal Marginal Relevance (MMR)

Maximal Marginal Relevance
(MMR)

Score = λ ×Re levance− (1−λ)×Redundancy

Example
v Relevance: Original ranking
v Redundancy: Similarity with already

selected terms

Count the frequency of these terms in
the document for coverage!

41	

334 Chapter 17 Topic Analysis

“Sports” count(“sports”, di) = 4

count(“travel”, di) = 2

count(“science”, di) = 1

πi1

πij = πi2

πik

θ1

θ2

θk

“Travel”

…

“Science”

Doc di

count(θL, di)

count(θj, di)
k

∑
L=1

Figure 17.5 Computing topic coverage when a topic is a term.

“Sports” πi1 / c(“sports”, di) = 0

πi2 / c(“travel”, di) = 1

πik / c(“science”, di) = 0

θ1

θ2

θk

“Travel”

…

“Science”

Doc di Cavaliers vs. Golden State Warriors: NBA playoff finals …
basketball game … travel to Cleveland … star …

1. Need to count
related words also!

3. Mine complicated topics?

2. “Star” can be ambiguous (e.g., star in the sky).

Figure 17.6 Problems in representing a topic as a term.

some specific examples. So now let’s examine the simple approach we have been
discussing with a sample document in Figure 17.6.

Here we have a text document that’s about an NBA basketball game. In terms of
the content, it’s about sports, but if we simply count these words that represent our
topics, we will find that the word sports actually did not occur in the article, even
though the content is about sports. Since the count of sports is zero, the coverage of
sports would be estimated as zero. We may note that the term science also did not
occur in the document, and so its estimate is also zero, which is intuitively what we
want since the document is not about science. However, giving a zero probability to
sports certainly is a problem because we know the content is about sports. What’s
worse, the term travel actually occurred in the document, so when we estimate

Limitations of Single Term as a topic

1.  It is difficult which terms are “similar”
while choosing a topic

2.  Topics can be complicated, e.g. “Politics
in Sports” or “Sports Injuries”

3.  There can be multiple topics in a
document, “Sports” and “Politics”

4.  Ambiguous words

Solution: Model topics as
word distribution!

43	

336 Chapter 17 Topic Analysis

“Sports”

sports 0.02
game 0.01
basketball 0.005
football 0.004
play 0.003
star 0.003
…
nba 0.001
…
travel 0.0005
…

travel 0.05
attraction 0.03
trip 0.01
flight 0.004
hotel 0.003
island 0.003
…
culture 0.001
…
play 0.0002
…

science 0.04
scientist 0.03
spaceship 0.006
telescope 0.004
genomics 0.004
star 0.002
…
genetics 0.001
…
travel 0.00001
…

θ1 θ2 θk“Travel” … “Science”

P(w|θk)P(w|θ2)P(w|θ1)

∑
w2V

p(w|θi) = 1 Vocabulary set: V = {w1, w 2 , … }

Figure 17.7 Topic as a word distribution.

It turns out that all these can be elegantly achieved by using a probability distri-
bution over words (i.e., a unigram language model) to denote a topic, as shown in
Figure 17.7. Here, you see that for every topic, we have a word distribution over all
the words in the vocabulary.

For example, the high probability words for the topic “sports” are sports, game,
basketball, football, play, and star. These are all intuitively sports-related terms
whose occurrences should contribute to the likelihood of covering the topic
“sports” in an article. Note that, in general, the distribution may give all the words a
non-zero probability since there is always a very very small chance that even a word
not so related to the topic would be mentioned in an article about the topic. Note
also that these probabilities for all the words always sum to one for each topic, thus
forming a probability distribution over all the words.

Such a word distribution represents a topic in that if we sample words from the
distribution, we tend to see words that are related to the topic. It is also interesting
to note that as a very special case, if the probability of the mass is concentrated
entirely on just one word, e.g., sports, then the word distribution representation
of a topic would degenerate to the simplest representation of a topic as just one
single word discussed before. In this sense, the word distribution representation
is a natural generalization and extension of the single-term representation.

Refined Topic Modeling
•  Input: A set of documents
•  Output: output consists of two types of

distributions
– Word distribution foe each topic
– Topic distribution for each document

Two Distributions
•  Word distribution for topic i – global

across all documents

•  Topic distribution for document i – local to
a document

45	

338 Chapter 17 Topic Analysis

∑

w∈V

p(w | θi) = 1. (17.1)

Naturally, we still have the same constraint on the topic coverage, i.e.,

k∑

j=1

πij = 1, ∀i . (17.2)

As a computation problem, our input is text data, a collection of documents C,
and we assume that we know the number of topics, k, or hypothesize that there
are k topics in the text data. As part of our input, we also know the vocabulary V ,
which determines what units would be treated as the basic units (i.e., words) for
analysis. In most cases, we will use words as the basis for analysis simply because
they are the most natural units, but it is easy to generalize such an approach to
use phrases or any other units that we can identify in text, as the basic units and
treat them as if they were words. Our output consists of two families of probability
distributions. The first is a set of topics represented by a set of θi’s, each of which is
a word distribution. The second is a topic coverage distribution for each document
di, {πi1, . . . , πik}.

The question now is how to generate such output from our input. There are
potentially many different ways to do this, but here we introduce a general way of
solving this problem called a generative model. This is, in fact, a very general idea
and a principled way of using statistical modeling to solve text mining problems.

The basic idea of this approach is to first design a generative model for our data,
i.e., a probabilistic model to model how the data are generated, or a model that can
allow us to compute the probability of how likely we will observe the data we have.
The actual data aren’t necessarily (indeed often unlikely) generated this way, but
by assuming the data to be generated in a particular way according to a particular
model, we can have a formal way to characterize our data which further facilitates
topic discovery.

In general, our model will have some parameters (which can be denoted by #);
they control the behavior of the model by controlling what kind of data would have
high (or low) probabilities. If you set these parameters to different values, the model
would behave differently; that is, it would tend to give different data points high (or
low) probabilities.

We design the model in such a way that its parameters would encode the knowl-
edge we would like to discover. Then, we attempt to estimate these parameters
based on the data (or infer the values of parameters based on the observed data) so
as to generate the desired output in the form of parameter values, which we have

338 Chapter 17 Topic Analysis

∑

w∈V

p(w | θi) = 1. (17.1)

Naturally, we still have the same constraint on the topic coverage, i.e.,

k∑

j=1

πij = 1, ∀i . (17.2)

As a computation problem, our input is text data, a collection of documents C,
and we assume that we know the number of topics, k, or hypothesize that there
are k topics in the text data. As part of our input, we also know the vocabulary V ,
which determines what units would be treated as the basic units (i.e., words) for
analysis. In most cases, we will use words as the basis for analysis simply because
they are the most natural units, but it is easy to generalize such an approach to
use phrases or any other units that we can identify in text, as the basic units and
treat them as if they were words. Our output consists of two families of probability
distributions. The first is a set of topics represented by a set of θi’s, each of which is
a word distribution. The second is a topic coverage distribution for each document
di, {πi1, . . . , πik}.

The question now is how to generate such output from our input. There are
potentially many different ways to do this, but here we introduce a general way of
solving this problem called a generative model. This is, in fact, a very general idea
and a principled way of using statistical modeling to solve text mining problems.

The basic idea of this approach is to first design a generative model for our data,
i.e., a probabilistic model to model how the data are generated, or a model that can
allow us to compute the probability of how likely we will observe the data we have.
The actual data aren’t necessarily (indeed often unlikely) generated this way, but
by assuming the data to be generated in a particular way according to a particular
model, we can have a formal way to characterize our data which further facilitates
topic discovery.

In general, our model will have some parameters (which can be denoted by #);
they control the behavior of the model by controlling what kind of data would have
high (or low) probabilities. If you set these parameters to different values, the model
would behave differently; that is, it would tend to give different data points high (or
low) probabilities.

We design the model in such a way that its parameters would encode the knowl-
edge we would like to discover. Then, we attempt to estimate these parameters
based on the data (or infer the values of parameters based on the observed data) so
as to generate the desired output in the form of parameter values, which we have

How to obtain the the
probability distributions

from the input data?

Maximum Likelihood Estimate
of a Generative Model

47	

17.2 Topics as Word Distributions 339

designed to denote the knowledge we would like to discover. How exactly we should
fit the model to the data or infer the parameter values based on the data is often a
standard problem in statistics, and there are many different ways to do this as we
discussed briefly in Chapter 2.

Following the idea of using a generative model to solve the specific problem of
discovering topics and topic coverages from text data, we see that our generative
model needs to contain all the k word distributions representing the topics and
the topic coverage distributions for all the documents, which is all the output we
intend to compute in our problem setup. Thus, there will be many parameters in
the model. First, we have |V | parameters for the probabilities of words in each
word distribution, so we have in total |V |k word probability parameters. Second,
for each document, we have k values of π , so we have in total Nk topic coverage
probability parameters. Thus, we have in total |V |k + Nk parameters. Given that
we have constraints on both θ and π , however, the number of free parameters
is smaller at (|V | − 1)k + N(k − 1); in each word distribution, we only need to
specify |V | − 1 probabilities and for each document, we only need to specify k − 1
probabilities.

Once we set up the model, we can fit its parameters to our data. That means we
can estimate the parameters or infer the parameters based on the data. In other
words, we would like to adjust these parameter values until we give our data set
maximum probability. Like we just mentioned, depending on the parameter values,
some data points will have higher probabilities than others. What we’re interested
in is what parameter values will give our data the highest probability.

In Figure 17.8, we illustrate #, the parameters, as a one-dimensional variable.
It’s oversimplification, obviously, but it suffices to show the idea. The y axis shows
the probability of the data. This probability obviously depends on this setting of #,
so that’s why it varies as you change #’s value in order to find #∗, the parameter

!* !

p(data|model, !)

Parameter estimation/inferences
!* = argmax! p(data|model, !)

Figure 17.8 Maximum likelihood estimate of a generative model.Choose a model that has maximum
probability of producing the training data.

Advantages
•  Multiple words allow us to describe fairly

complicated topics.
•  The term weights model subtle

differences of semantics in related topics.
•  Because we have probabilities for the

same word in different topics, we can
accommodate multiple senses of a word,
addressing the issue of word ambiguity.

48	

Mining One Topic

49	

340 Chapter 17 Topic Analysis

settings that maximize the probability of the observed data. Such a search yields our
estimate of the model parameters. These parameters are precisely what we hoped
to discover from the text data, so we view them as the output of our data mining or
topic analysis algorithm.

This is the general idea of using a generative model for text mining. We design
a model with some parameter values to describe the data as well as we can. After
we have fit the data, we learn parameter values. We treat the learned parameters as
the discovered knowledge from text data.

17.3 Mining One Topic from Text
In this section, we discuss the simplest instantiation of a generative model for
modeling text data, where we assume that there is just one single topic covered
in the text and our goal is to discover this topic.

More specifically, as illustrated in Figure 17.9 , we are interested in analyzing
each document and discovering a single topic covered in the document. This is
the simplest case of a topic model. Our input now no longer has k topics because
we know (or rather, specify) that there is only one topic. Since each document can
be mined independently, without loss of generality, we further assume that the
collection has only one document. In the output, we also no longer have coverage
because we assumed that the document has a 100% coverage of the topic we would
like to discover. Thus, the output to compute is the word distribution represent-
ing this single topic, or probabilities of all words in the vocabulary given by this
distribution, as illustrated in Figure 17.9 .

text ?
mining ?
association ?
database ?
…
query ?
…

θ
Text data

Lorem ipsum,
 Dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.
 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur dolor sit amet, consectetur adipiscing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.
 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.
 Duis aute irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.
 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur.

Doc dP(w|θ)

Output: {θ}Input: C = {d}, V

100%

Figure 17.9 The simplest topic model with one topic.

Mining One Topic

50	

p(wi |θ) =
c(wi ,d)
| d |

i =1 to M where M is the number of
words in the dictionary!

Mining Multiple Topics 370 Chapter 17 Topic Analysis

sports 0.02
game 0.01
basketball 0.005
football 0.004
…

π11 π21 = 0% πN1 = 0%

π12 π22 πN2

π1k π2k πNk

θ1

travel 0.05
attraction 0.03
trip 0.01
…

science 0.04
scientist 0.03
spaceship 0.006
…

θ2

θk

…

…

Text data

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum, dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

i d minim veniam, quis nostrud exercitation ullamco laboris

i te irure dolor in

, quis nostrud exercitation ullamco laboris

si ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Doc 1

Output: {θ1, …, θk}, {πi1, …, πik}Input: C, k, V

30%

12%

8%

Doc 2 Doc N

Figure 17.28 Task of mining multiple topics in text.

The formal definition of mining multiple topics from text is illustrated in Fig-
ure 17.28. The input is a collection of text data, the number of topics, and a vocab-
ulary set. The output is of two types. One is topic characterization where each topic
is represented by θi, which is a word distribution. The other is the topic coverage for
each document πij which refers to the probability that document di covers topic θj .

Such a problem can be solved by using PLSA, a generalization of the simple two-
component mixture model to more than two components. Such a more generative
model is illustrated in Figure 17.29, where we also retain the background model
used in the two-component mixture model (which, if you recall, was designed to
discover just one topic). Different from the simple mixture model discussed earlier,
the model here includes k component models, each of which represents a distinct
topic and can be used to generate a word in the observed text data. Adding the
background model θB, we thus have a total of k + 1 component unigram language
models in PLSA.2

2. The original PLSA [Hofmann 1999] did not include a background language model, thus it gives
common words high probabilities in the learned topics if such common words are not removed
in the preprocessing stage.

How to Compress
Text?

The computer science and engineering department offers
many computer related courses. Although there is science

term in the name, no science courses are offered in the
department.

Run Length Coding?
The computer science and engineering department offers
many computer related courses. Although there is science

term in the name, no science courses are offered in the
department.

Not a good idea!

Differential Coding?
The computer science and engineering department offers
many computer related courses. Although there is science

term in the name, no science courses are offered in the
department.

Not a good idea!

Huffman Coding?
The computer science and engineering department offers
many computer related courses. Although there is science

term in the name, no science courses are offered in the
department.

Huffman Coding
•  Removes the source information

•  Frequent symbols assigned shorter

codes

•  Prefix coding

Can we refer to a
dictionary entry of

the word?

Dictionary-based
Compression

•  Do not encode individual symbols as
variable-length bit strings

•  Encode variable-length string of symbols as
single token

•  The tokens form an index into a phrase
dictionary

•  If number of tokens are smaller than number
of phrases, we have compression

Lempel-Ziv-Welsh
(LZW) Coding

•  A dictionary-based coding algorithm
•  Build the dictionary dynamically
•  Initially the dictionary contains only

character codes
•  The remaining entries in the dictionary are

then build dynamically

LZW Compression
set w = NIL

 loop
 read a character k

 if wk exists in the dictionary

 w = wk

 else

 output the code for w

 add wk to the dictionary

 w=k

 endloop

Ref:	http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf	

Example

Ref:	http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf	

Example of LZW: Compression
Input String: ^WED^WE^WEE^WEB^WET

TEOFT

^WET266260T^WE

E^W

W^

B^265B^B

WEB264257BWE

EW

E^W263261WE^

^E

^WEE262260E^WE

E^W

W^

E^261E^E

^WE260256E^W

W^

D^259D^D

ED258EDE

WE257WEW

^W256^W^

^NIL

SymbolIndexOutputkw set w = NIL
loop

read a character k
if wk exists in the dictionary

w = wk
else

output the code for w
add wk to the dictionary
w = k

endloop

LZW Algorithm
LZW Decompression:

read fixed length token k (code or char)
output k
w = k
loop

read a fixed length token k
entry = dictionary entry for k
output entry
add w + first char of entry to

the dictionary
w = entry

endloop

The nice thing is that the decom pressor builds its own d ictionary on its
side, that matches exactly the com pressor's, so that only the codes need
to be sent.

Example of LZW
Input String (to decode): ^WED<256>E<260><261><257>B<260>T

^WET266TT^WE

B^265^WE<260>B

WEB264BBWE

E^W263WE<257>E^

^WEE262E^<261>^WE

E^261^WE<260>E

^WE260EE^W

D^259^W<256>D

ED258DDE

WE257EEW

^W256WW^

^^

SymbolIndexOutputkw read a fixed length token k
(code or char)

output k
w = k
loop

read a fixed length token k
(code or char)

entry = dictionary entry for k
output entry
add w + first char of entry to

the dictionary
w = entry

endloop

LZW Decompression
read fixed length token k (code or char)

output k
w=k
loop

 read a fixed length token k

 entry = dictionary entry for k

 output entry
 add w + first char of entry to the dictionary

 w = entry

endloop

Ref:	http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf	

Example

Ref:	http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf	

Example of LZW: Compression
Input String: ^WED^WE^WEE^WEB^WET

TEOFT

^WET266260T^WE

E^W

W^

B^265B^B

WEB264257BWE

EW

E^W263261WE^

^E

^WEE262260E^WE

E^W

W^

E^261E^E

^WE260256E^W

W^

D^259D^D

ED258EDE

WE257WEW

^W256^W^

^NIL

SymbolIndexOutputkw set w = NIL
loop

read a character k
if wk exists in the dictionary

w = wk
else

output the code for w
add wk to the dictionary
w = k

endloop

LZW Algorithm
LZW Decompression:

read fixed length token k (code or char)
output k
w = k
loop

read a fixed length token k
entry = dictionary entry for k
output entry
add w + first char of entry to

the dictionary
w = entry

endloop

The nice thing is that the decom pressor builds its own d ictionary on its
side, that matches exactly the com pressor's, so that only the codes need
to be sent.

Example of LZW
Input String (to decode): ^WED<256>E<260><261><257>B<260>T

^WET266TT^WE

B^265^WE<260>B

WEB264BBWE

E^W263WE<257>E^

^WEE262E^<261>^WE

E^261^WE<260>E

^WE260EE^W

D^259^W<256>D

ED258DDE

WE257EEW

^W256WW^

^^

SymbolIndexOutputkw read a fixed length token k
(code or char)

output k
w = k
loop

read a fixed length token k
(code or char)

entry = dictionary entry for k
output entry
add w + first char of entry to

the dictionary
w = entry

endloop

Where is Compression?

•  Input String: ^WED^WE^WEE^WEB^WET

–  19 * 8 bits = 152 bits

•  Encoded: ^WED<256>E<260><261><257>B<260>T

–  12*9 bits = 108 bits (7 symbols and 5 codes, each of

9 bits)

•  Why 9 bits?

Ref:	http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf	

Ref:	http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf	

LZW Algorithm - Discussion

9 bits

0

9 bits

1

<- ASCII characters

(0 to 255)

<- Codes

(256 to 512)

! W here is the compression?
! Original String to decode : ^W ED^W E^W EE^W EB^W ET
! Decoded String : ^W ED<256>E<260><261><257>B<260>T
! Plain ASCII coding of the string : 19 * 8 bits = 152 bits
! LZW coding of the string: 12*9 bits = 108 bits (7 symbols and 5

codes, each of 9 bits)
! W hy 9 bits?

! An ASCII character has a value ranging from 0 to 255
! All tokens have fixed length
! There has to be a distinction in representation between an

ASCII character and a Code (assigned to strings of length 2 or
more)

! Codes can only have values 256 and above

LZW Algorithm ñ Discussion (continued)
! With 9 bits we can only have a maximum of 256 codes for

strings of length 2 or above (with the first 256 entries for
ASCII characters)

" Original LZW uses dictionary with 4K entries, with the
length of each symbol/code being 12 bits

12 bits

0 <- ASCII characters

(0 to 255 entries)

<- Codes

(256 to 4096 entries)

00 0

100 0

111 1

" With 12 bits, we can have a maximum of 212 ñ 256 codes.

! Practical implementations of LZW algorithm follow the two

approaches:
! Flush the dictionary periodically

ñ no wasted codes
! Grow the length of the codes as the algorithm proceeds

- First start with a length of 9 bits for the codes.
- Once we run out of codes, increase the length to 10 bits. When we

run out of codes with 10 bits then we increase the code length to 11
bits and so on.

- more efficient.

Codes 256-5121

ASCII0

Codes 512-76701

Codes 256-51110

1

0

Codes 768-10231

ASCII0

1

1

1

1

0

0

0

0

Codes 512-76701

Codes 768-102311

Codes 1024-127900

Codes 1280-153510

Codes 1536-179101

Codes 256-51110

1

0

Codes 1792-20471

ASCII0Out of codes

Out of codes

Original LZW Uses 12-bit
Codes!

LZW Algorithm - Discussion

9 bits

0

9 bits

1

<- ASCII characters

(0 to 255)

<- Codes

(256 to 512)

! W here is the compression?
! Original String to decode : ^W ED^W E^W EE^W EB^W ET
! Decoded String : ^W ED<256>E<260><261><257>B<260>T
! Plain ASCII coding of the string : 19 * 8 bits = 152 bits
! LZW coding of the string: 12*9 bits = 108 bits (7 symbols and 5

codes, each of 9 bits)
! W hy 9 bits?

! An ASCII character has a value ranging from 0 to 255
! All tokens have fixed length
! There has to be a distinction in representation between an

ASCII character and a Code (assigned to strings of length 2 or
more)

! Codes can only have values 256 and above

LZW Algorithm ñ Discussion (continued)
! With 9 bits we can only have a maximum of 256 codes for

strings of length 2 or above (with the first 256 entries for
ASCII characters)

" Original LZW uses dictionary with 4K entries, with the
length of each symbol/code being 12 bits

12 bits

0 <- ASCII characters

(0 to 255 entries)

<- Codes

(256 to 4096 entries)

00 0

100 0

111 1

" With 12 bits, we can have a maximum of 212 ñ 256 codes.

! Practical implementations of LZW algorithm follow the two

approaches:
! Flush the dictionary periodically

ñ no wasted codes
! Grow the length of the codes as the algorithm proceeds

- First start with a length of 9 bits for the codes.
- Once we run out of codes, increase the length to 10 bits. When we

run out of codes with 10 bits then we increase the code length to 11
bits and so on.

- more efficient.

Codes 256-5121

ASCII0

Codes 512-76701

Codes 256-51110

1

0

Codes 768-10231

ASCII0

1

1

1

1

0

0

0

0

Codes 512-76701

Codes 768-102311

Codes 1024-127900

Codes 1280-153510

Codes 1536-179101

Codes 256-51110

1

0

Codes 1792-20471

ASCII0Out of codes

Out of codes

Ref:	http://users.ece.utexas.edu/~ryerraballi/MSB/pdfs/M2L3.pdf	

What if we run out of
codes?

•  Flush the dictionary periodically
•  Or Grow length of codes dynamically

