
Week 8 
SIFT Features 
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Given a single object 
image, search images 

with that object! 



Challenges 
•  Illumination change 
• Orientation change 
• Scale change 



The Main Idea 



SIFT – Scale Invariant 
Feature Transform 

 David Lowe 
University of British Columbia	



Main Steps 
•  Extract keypoints in example image  

– key point descriptors 

•  Find keypoints in the test image 
– keypoint descriptors 

•  Match keypoints across images 
•  If enough number of good matches are 

found, content is similar 



Finding Keypoints 
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Center-Surround Approach 

D=(a1+a2+a3…)  
– (b1+b2+b3)		
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Differential of Gaussian 

Pope and Lowe (2000) used features based on the hierarchical grouping of image contours,
which are particularly useful for objects lacking detailed texture.

The history of research on visual recognition contains work on a diverse set of other
image properties that can be used as feature measurements. Carneiro and Jepson (2002)
describe phase-based local features that represent the phase rather than the magnitude of local
spatial frequencies, which is likely to provide improved invariance to illumination. Schiele
and Crowley (2000) have proposed the use of multidimensional histograms summarizing the
distribution of measurements within image regions. This type of feature may be particularly
useful for recognition of textured objects with deformable shapes. Basri and Jacobs (1997)
have demonstrated the value of extracting local region boundaries for recognition. Other
useful properties to incorporate include color, motion, figure-ground discrimination, region
shape descriptors, and stereo depth cues. The local feature approach can easily incorporate
novel feature types because extra features contribute to robustness when they provide correct
matches, but otherwise do little harm other than their cost of computation. Therefore, future
systems are likely to combine many feature types.

3 Detection of scale-space extrema

As described in the introduction, we will detect keypoints using a cascade filtering approach
that uses efficient algorithms to identify candidate locations that are then examined in further
detail. The first stage of keypoint detection is to identify locations and scales that can be
repeatably assigned under differing views of the same object. Detecting locations that are
invariant to scale change of the image can be accomplished by searching for stable features
across all possible scales, using a continuous function of scale known as scale space (Witkin,
1983).

It has been shown by Koenderink (1984) and Lindeberg (1994) that under a variety of
reasonable assumptions the only possible scale-space kernel is the Gaussian function. There-
fore, the scale space of an image is defined as a function, L(x, y,σ), that is produced from
the convolution of a variable-scale Gaussian, G(x, y,σ), with an input image, I(x, y):

L(x, y,σ) = G(x, y,σ) ∗ I(x, y),

where ∗ is the convolution operation in x and y, and

G(x, y,σ) =
1

2πσ2
e−(x2+y2)/2σ2

.

To efficiently detect stable keypoint locations in scale space, we have proposed (Lowe, 1999)
using scale-space extrema in the difference-of-Gaussian function convolved with the image,
D(x, y,σ), which can be computed from the difference of two nearby scales separated by a
constant multiplicative factor k:

D(x, y,σ) = (G(x, y, kσ) −G(x, y,σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y,σ). (1)

There are a number of reasons for choosing this function. First, it is a particularly efficient
function to compute, as the smoothed images, L, need to be computed in any case for scale
space feature description, and D can therefore be computed by simple image subtraction.
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Example 
•  G = [-1 4 1] 
•  A = [1 2 3 3 5 3 3 2 1] 
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Differential of Gaussian 



DoG in 3D 



LoG for Peak Detection 
•  Apply Gaussian filter 
•  Take second order derivative 
•  Second order derivative is also called 

Laplacian 
•  Hence, Laplacian of Gaussian 



What should be the 
width of DoG? 

K.	Grauman,	B.	Leibe	
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K. Grauman, B. Leibe

What Is A Useful Signature Function?

• Laplacian-of-Gaussian = “blob” detector

K. Grauman, B. Leibe



Source:	Lana	Lazebnik	



Source:	Lana	Lazebnik	
σ= 2	



Source:	Lana	Lazebnik	
σ= 2.5	



Source:	Lana	Lazebnik	
σ= 3.1	



Source:	Lana	Lazebnik	
σ=3.9	



Source:	Lana	Lazebnik	
σ= 4.8	



Source:	Lana	Lazebnik	
σ= 6.1	



Source:	Lana	Lazebnik	
σ= 7.6	



Source:	Lana	Lazebnik	
σ= 9.5	



Source:	Lana	Lazebnik	
σ= 11.9	



Scale-space blob detector: Example

Source: Lana LazebnikSource:	Lana	Lazebnik	



Stable feature/keypoints 
•  Features that are stable across scales 
•  Features that can be assigned across 

different views of the same object 

27	



 Scale

 (first

 octave)

Scale

(next

octave)

Gaussian

Difference of

Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, σ2∇2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor σ2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of σ2∇2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and σ2∇2G can be understood from the heat diffusion equa-
tion (parameterized in terms of σ rather than the more usual t = σ2):

∂G

∂σ
= σ∇2G.

From this, we see that ∇2G can be computed from the finite difference approximation to
∂G/∂σ, using the difference of nearby scales at kσ and σ:

σ∇2G =
∂G

∂σ
≈

G(x, y, kσ) −G(x, y,σ)

kσ − σ

and therefore,

G(x, y, kσ) −G(x, y,σ) ≈ (k − 1)σ2∇2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the σ2 scale normalization required for the scale-invariant
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Scale-Space Extrema Detection 

k-1σ 

k0σ 

k1σ 

k2σ 

k3σ 

Difference of 
Gaussians Gaussians 

Scale 
(first octave) 

Scale 
(second octave) 



Key point localization 
•  Detect maxima and 

minima of difference-of-
Gaussian in scale space 

•  Each point is compared 
to its 8 neighbors in the 
current image and 9 
neighbors each in the 
scales above and below For each max or min found, 

record the location and 
the scale. 

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k − 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even significant differences in scale, such as k =

√
2.

An efficient approach to construction of D(x, y,σ) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of σ) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that final
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of σ (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to σ is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,σ), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the first few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to
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Refining Keypoints 
•  There are still a lot of points, some of them are 

not stable. 
•  Keypoint along edges are not stable! 
•  Eliminating edge points. Edge points have 

large principal curvature across the edge but a 
small one in the perpendicular direction. 



Orientation Assignment 
•  Calculate gradient of the image with nearest 

scale or blur (σ) to the Kaypoint DoG 
•  Divide histogram into 36 bins and obtain 

histogram for 16*16 patch around keypoint 
•  The bin votes are gradient magnitudes 

weighted by a circular Gaussian window with 
σ that is 1.5 times of scale of keypoint 

•  The peak in the histogram in the orientation 
of the keypoint 



Obtain feature vector for 
each keypoint using 
gradient orientation! 



Possible Features 
•  Store intensity values in the 

neighborhood 

– Sensitive to lighting changes 

•  Gradient Orientation Histogram 



Feature descriptor 
•  Based on 16*16 patches 
•  4*4 sub regions 
•  8 bins in each sub region 
•  4*4*8=128 dimensions in total 



Histogram Calculation 

•  Find bin corresponding to the angle of 
the pixel 

•  Votes are Gaussian-weighted gradient 
magnitudes 

•  The Gaussian has σ equal to the half of 
the descriptor window, i.e. 8   



Feature descriptor 

Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.

15



Example (a) (b)

(c) (d)
Figure 5: This figure shows the stages of keypoint selection. (a) The 233x189 pixel original image.
(b) The initial 832 keypoints locations at maxima and minima of the difference-of-Gaussian function.
Keypoints are displayed as vectors indicating scale, orientation, and location. (c) After applying
a threshold on minimum contrast, 729 keypoints remain. (d) The final 536 keypoints that remain
following an additional threshold on ratio of principal curvatures.

As suggested by Brown, the Hessian and derivative of D are approximated by using dif-
ferences of neighboring sample points. The resulting 3x3 linear system can be solved with
minimal cost. If the offset x̂ is larger than 0.5 in any dimension, then it means that the ex-
tremum lies closer to a different sample point. In this case, the sample point is changed and
the interpolation performed instead about that point. The final offset x̂ is added to the location
of its sample point to get the interpolated estimate for the location of the extremum.

The function value at the extremum, D(x̂), is useful for rejecting unstable extrema with
low contrast. This can be obtained by substituting equation (3) into (2), giving

D(x̂) = D +
1

2

∂D

∂x

T

x̂.

For the experiments in this paper, all extrema with a value of |D(x̂)| less than 0.03 were
discarded (as before, we assume image pixel values in the range [0,1]).

Figure 5 shows the effects of keypoint selection on a natural image. In order to avoid too
much clutter, a low-resolution 233 by 189 pixel image is used and keypoints are shown as
vectors giving the location, scale, and orientation of each keypoint (orientation assignment is
described below). Figure 5 (a) shows the original image, which is shown at reduced contrast
behind the subsequent figures. Figure 5 (b) shows the 832 keypoints at all detected maxima
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Object Recognition Overview 
•  Store SIFT vectors for each keypoint for 

each model object in database 
•  Generate keypoints in test image 
•  Use nearest neighbor to find feature 

matches 
•  Cluster features that agree on object pose 
•  Estimate final location, scale, and 

orientation of the object 
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SURF 

1. A faster implementation of SIFT with 
few minor modifications! 

2. Uses 64 features instead of 128 
features! 



How would you use 
SIFT for classification? 



Steps 
•  Collect all SIFT keypoint feature vectors from 

training images 
•  Obtain a codebook using k-means clustering 
•  Quantize feature vectors and calculate 

frequency of each centroid 
– Bag of Words 

•  From each image you will get a fixed size 
vector 


