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How to synchronize 
videos? 
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Obtain fingerprint of 
the audio and match 

the fingerprints! 

Requirements 

• Audio fingerprints have to be: 
– Compact (= small storage and fast search) 
– Discriminative (= less false positives) 
– Robust (= invariance to audio degradations) 
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How do human editors 
choose video? 

1.  Remove videos with bad view quality! 

–  Shakiness, occlusion, tilt 

2.  Create a composition of videos taken 
from multiple perspectives! 

–  Angle, distance    
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Shakiness 
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(a) V1 (b) V2 (c) V3

Fig. 1. P1 - NUS Art Festival NAF 160312 [6]

(a) V1 (b) V2 (c) V3

Fig. 2. P2 - NUS Art Festival NAF 160312 [6]

performance number (1-3), video number (1-3), and duration
(1-4). Videos are recorded at the resolution of 720*480 pixels
with 30 frames per second. Representative frames from each
of these videos are shown in Figure 1-3.

B. Ground Truth
ALSO ADD A FIGURE SHOWING DISTRIBUTION OF

THE SHAKINESS VALUES.
To obtain user perceived ground truth shakiness of videos,

we record user ratings for each video. In total we have 36
videos (3 performances, 3 angles, 4 durations). We asked users
to view each video and rate its shakiness on a scale of 1 to
5 as follows: 1 - Not shaky 2 - Little shaky 3 - Medium
shaky 4 - Mostly shaky 5 - Completely shaky. In order to
ensure genuineness of the ground truth, we imposed following
restrictions on the way users:

• If same content is viewed by a user over and over, the
shakiness artefact may look more prominent in the videos
viewed later. Therefore, we ensures that each user only
watches one video of one performance. Hence, a user can
only rate three videos at maximum.

• The three videos assigned to a user are of different
durations.

• Every video is watched by at least three users. Represen-
tative shakiness score is measured by taking average of
the ratings by all users.

Final average ratings for each individual are shown in the
Table I. We translate these values by 1 and scale by 4 to bring
the range between 0 and 1, i.e.,

Ŝ =
R− 1

4
(5)

(a) V1 (b) V2 (c) V3

Fig. 3. P3 - Singapore Art Festival SAF 290512 [6]

TABLE I
USER PERCEIVED AVERAGE SHAKINESS RATINGS WITH EQUIVALENT

NORMALIZED VALUES IN PARENTHESIS

Video No. 1-minute 2-minute 3-minute 4-minute
P1

V1 4.7 (0.92) 4.7 (0.92) 4.5 (0.86) 4.5 (0.86)
V2 2.7 (0.42) 2.3 (0.33) 2.3 (0.33) 3.0 (0.50)
V3 2.7 (0.41) 2.0 (0.25) 2.0 (0.25) 3.0 (0.5)

P2
V1 4.3 (0.83) 3.3 (0.58) 4.3 (0.83) 4.0 (0.75)
V2 3.6 (0.67) 2.0 (0.25) 2.0 (0.25) 2.8 (0.44)
V3 1.7 (0.17) 4.0 (0.75) 2.7 (0.41) 2.3 (0.33)

P3
V1 1.3 (0.08) 2.0 (0.25) 2.0 (0.25) 2.0 (0.25)
V2 2.3 (0.31) 2.7 (0.41) 2.7 (0.41) 3.0 (0.50)
V3 1.0 (0.0) 1.3 (0.06) 1.0 (0.0) 1.0 (0.0)

Xt

Xt-1

Minimum Mean Absolute Error

pt 

Fig. 4. Camera pan is measured by projecting the pixel values on x-axis (X̄t)
and matching the resulting vector across frames (X̄t and X̄t−1) for minimum
mean absolute error. In the given figure, we get minimum error by shifting
the current frame vector by 2 pixels, hence, the current pan value (pt) is 2.

where R is the average user rating and Ŝ is the ground
truth shakiness value. The normalized values are given in
parenthesis in Table I. To ensure that the users understand
rating scale correctly, we used one stable video recorded by
a tripod mounted camera (P3V3) in the user study. We see
in Table I that the video (last row) is rated with near zero
shakiness value, which proves that the user ratings indeed
reflect the shakiness of the video. Note that while our goal
is to model shakiness over a continuous scale of 0 to 1, it is
hard for users to rake on such a fine scale. Therefore, we ask
users to rate over a 5 point user friendly scale and linearly
interpolate intermediate values.

V. CAMERA MOTION ESTIMATION

To measure the camera motion, we follow the approach
described in [3] because it is fast and robust to the motion
of objects within the video. In this approach, the pixel values
are projected on x-axis and y-axis, resulting in two vectors for
each frames. For an image I of size (M ×N ), the projection
of x-axis, X̄ , and y-axix, Ȳ , are calculated as follows:

X̄t(x) =
N−1∑

y=0

It(x, y) (6)

Ȳt(y) =
M−1∑

x=0

It(x, y) (7)

where x and y are image coordinates. By projecting pixel
values on both axes, we get two representative vectors for
each frame, i.e., X̄t and Ȳt of size M and N respectively. TO
measure the tilt value, we shift X̄t one pixel at a time on both
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positive and negative sides and measure mean absolute error
between overlapping elements of the vectors. An example of
the method is given in Figure 4 where the current camera pan
is 2 pixels.

VI. FEATURE ANALYSIS FOR SHAKINESS MEASUREMENT

The route cause of shakiness artefact is camera motion.
Camera motion is measured in terms of two parameters, pan
and tilt. There are various ways in which these two parameters
can be combined to measure shakiness for given video. Our
goal in this section is to find which model produced shakiness
values are most correlated with the ground truth. Table II lists
9 shakiness models out of which 6 are naive models while the
other 3 have been explored before. The naive models, which
are based on pan and tilt parameters, are included for the shake
of completeness of the analysis.

We measure shakiness value for 36 videos in the dataset
using these methods and find Pearson correlation with the
ground truth, which is given in the last column of the table.
We can make the following conclusions by looking at the
correlation coefficients:

• Because MT is greater than MP and MTF is greater
than MPF , we can say that the camera tilt is more likely
to be perceived as shakiness artefact than camera pan. In
other words, users are more tolerant to camera pan than
camera tilt.

• For all models, filtering out smooth motion increases
correlation, which shows that smooth camera motion
does not contribute to the shakiness artefact. Hence,
the residual camera motion, measured by subtracting
the smooth camera motion from current camera motion,
should be used for modelling shakiness.

We also notice that using both pan and tilt together results
in better correlation than using them individually. The best
correlation is obtained by the method described in [7] that
uses both pan and tilt value to measure shakiness. A median
filter of size 15 is applied to obtain smooth camera motion.
The filtered camera pan and tilt values are subtracted from
cumulative pan and tilt to measure residual motion. Absolute
value of this residual motion is added and averaged over all
frames to measure the shakiness for the whole video.

VII. PERCEIVED VIDEO SHAKINESS INDEX (PVSI)
From the feature and model analysis in the previous section,

we can see that there are three main parameters that affect
perceived shakiness of the video: camera pan (MPF ), camera
tilt (MTF ), and fraction of shaky frames (ψ = ns/n).
One important aspect missing from these parameters is the
distribution of shaky frames. Whenever the camera shake
occurs, it results in a number of shaky frames. For instance,
for a fixed number of shaky frames (say 200 frames), user
would perceive it as more shaky if the frames correspond to
two camera movements (with 100 frames each) than one. In
this work, we define a new feature, moves (µ), to capture
the camera movement frequency and combine that with pan,
tilt, and number of shaky frames to measure shakiness. We
use linear regression model to fuse the four parameters. The
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detailed description of parameter measurement, fusion, and
overall algorithm are given below.

A. Camera Moves Measurement

As mentioned earlier, one camera move results in a series of
shaky frames. Our goal is to measure number of such camera
moves in the whole video. To do that, we first measure the
residual camera motion vector by subtracting the filtered pan
(tilt) value from cumulative pan (tilt) value, i.e.,

pri = |pai − pfi | (17)

τ ri = |τai − τfi | (18)

where (pri , τ
r)i is the residual camera motion vector. Figure

5 shows the magnitude of the camera motion vectors ν after
removing the smooth (filtered) pan and tilt motion, i.e.,

νi =
√
(pai − pfi )

2 + (τai − τfi )
2 (19)

We can see a series of peaks in the motion magnitudes
in Figure 5. While few peaks have significant height, there
are a number of peaks with small magnitude below 3. These
peaks correspond to small hand movements which are not per-
ceivable by humans. Also, video stabilization algorithms can
easily remove small camera motions. Therefore, we consider
pan and tilt values below a small number θp as noise, which
is found to be 2 pixels for the given dataset. Consequently,
motion magnitude peaks below

√
(22 + 22) are ignored in the

calculation. Also, we define a minimum width of the peak, θf ,
which is empirically chosen as 2 frames. After calculating the
number of peaks np, the moves parameter µ is measured as
follows:

µ =
np

n
(20)

The thresholds of θp and θr are calculated for the given
set of videos that are recorded at the resolution of 720*480
and frame rate of 30 fps. These thresholds should be scaled
according to the frame rate and resolution of the video, which
will be discussed later. We calculated µ for each video and
correlated with the ground truth. As expected, we obtained
an improved correlation of 0.8555 with the newly proposed
feature.
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detailed description of parameter measurement, fusion, and
overall algorithm are given below.

A. Camera Moves Measurement
As mentioned earlier, one camera move results in a series of

shaky frames. Our goal is to measure number of such camera
moves in the whole video. To do that, we first measure the
residual camera motion vector by subtracting the filtered pan
(tilt) value from cumulative pan (tilt) value, i.e.,

pri = |pai − pfi | (17)

τ ri = |τai − τfi | (18)

where (pri , τ
r)i is the residual camera motion vector. Figure

5 shows the magnitude of the camera motion vectors ν after
removing the smooth (filtered) pan and tilt motion, i.e.,

νi =
√
(pai − pfi )

2 + (τai − τfi )
2 (19)

We can see a series of peaks in the motion magnitudes
in Figure 5. While few peaks have significant height, there
are a number of peaks with small magnitude below 3. These
peaks correspond to small hand movements which are not per-
ceivable by humans. Also, video stabilization algorithms can
easily remove small camera motions. Therefore, we consider
pan and tilt values below a small number θp as noise, which
is found to be 2 pixels for the given dataset. Consequently,
motion magnitude peaks below

√
(22 + 22) are ignored in the

calculation. Also, we define a minimum width of the peak, θf ,
which is empirically chosen as 2 frames. After calculating the
number of peaks np, the moves parameter µ is measured as
follows:

np = |{νi|νi >
√

22 + 22;W (νi) > 2}| (20)

µ =
np

n
(21)

The thresholds of θp and θr are calculated for the given
set of videos that are recorded at the resolution of 720*480
and frame rate of 30 fps. These thresholds should be scaled
according to the frame rate and resolution of the video, which
will be discussed later. We calculated µ for each video and
correlated with the ground truth. As expected, we obtained
an improved correlation of 0.8555 with the newly proposed
feature.

=	clusters	of	shaky	frames	with			
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correlation is obtained by the method described in [7] that
uses both pan and tilt value to measure shakiness. A median
filter of size 15 is applied to obtain smooth camera motion.
The filtered camera pan and tilt values are subtracted from
cumulative pan and tilt to measure residual motion. Absolute
value of this residual motion is added and averaged over all
frames to measure the shakiness for the whole video.

VII. PERCEIVED VIDEO SHAKINESS INDEX (PVSI)
From the feature and model analysis in the previous section,

we can see that there are three main parameters that affect
perceived shakiness of the video: camera pan (MPF ), camera
tilt (MTF ), and fraction of shaky frames (ψ = ns/n).
One important aspect missing from these parameters is the
distribution of shaky frames. Whenever the camera shake
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detailed description of parameter measurement, fusion, and
overall algorithm are given below.

A. Camera Moves Measurement
As mentioned earlier, one camera move results in a series of

shaky frames. Our goal is to measure number of such camera
moves in the whole video. To do that, we first measure the
residual camera motion vector by subtracting the filtered pan
(tilt) value from cumulative pan (tilt) value, i.e.,

pri = |pai − pfi | (17)

τ ri = |τai − τfi | (18)

where (pri , τ
r)i is the residual camera motion vector. Figure

5 shows the magnitude of the camera motion vectors ν after
removing the smooth (filtered) pan and tilt motion, i.e.,

νi =
√
(pai − pfi )

2 + (τai − τfi )
2 (19)

We can see a series of peaks in the motion magnitudes
in Figure 5. While few peaks have significant height, there
are a number of peaks with small magnitude below 3. These
peaks correspond to small hand movements which are not per-
ceivable by humans. Also, video stabilization algorithms can
easily remove small camera motions. Therefore, we consider
pan and tilt values below a small number θp as noise, which
is found to be 2 pixels for the given dataset. Consequently,
motion magnitude peaks below

√
(22 + 22) are ignored in the

calculation. Also, we define a minimum width of the peak, θf ,
which is empirically chosen as 2 frames. After calculating the
number of peaks np, the moves parameter µ is measured as
follows:

np = |{νi|νi > θp;W (νi) > θr}| (20)

µ =
np

n
(21)

The thresholds of θp and θr are calculated for the given
set of videos that are recorded at the resolution of 720*480
and frame rate of 30 fps. These thresholds should be scaled
according to the frame rate and resolution of the video, which
will be discussed later. We calculated µ for each video and
correlated with the ground truth. As expected, we obtained
an improved correlation of 0.8555 with the newly proposed
feature.
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detailed description of parameter measurement, fusion, and
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As mentioned earlier, one camera move results in a series of

shaky frames. Our goal is to measure number of such camera
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residual camera motion vector by subtracting the filtered pan
(tilt) value from cumulative pan (tilt) value, i.e.,
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r)i is the residual camera motion vector. Figure

5 shows the magnitude of the camera motion vectors ν after
removing the smooth (filtered) pan and tilt motion, i.e.,
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We can see a series of peaks in the motion magnitudes
in Figure 5. While few peaks have significant height, there
are a number of peaks with small magnitude below 3. These
peaks correspond to small hand movements which are not per-
ceivable by humans. Also, video stabilization algorithms can
easily remove small camera motions. Therefore, we consider
pan and tilt values below a small number θp as noise, which
is found to be 2 pixels for the given dataset. Consequently,
motion magnitude peaks below
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(22 + 22) are ignored in the

calculation. Also, we define a minimum width of the peak, θf ,
which is empirically chosen as 2 frames. After calculating the
number of peaks np, the moves parameter µ is measured as
follows:

np = |{νi|νi > θp;W (νi) > θr}| (20)

µ =
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(21)

The thresholds of θp and θr are calculated for the given
set of videos that are recorded at the resolution of 720*480
and frame rate of 30 fps. These thresholds should be scaled
according to the frame rate and resolution of the video, which
will be discussed later. We calculated µ for each video and
correlated with the ground truth. As expected, we obtained
an improved correlation of 0.8555 with the newly proposed
feature.

0 20 40 60 80 100 120 140 160 180 200
−80

−60

−40

−20

0

20

40

Frame Number

 

 

pan
filtered pan
motion magnitude

Step 1: Camera pan-tilt 
 
 
Step 2: Filtered motion 
 
Step 3: Moves 
  
Step 4: Normalization 



Shakiness Results 

10	

4

TABLE II
DIFFERENT SHAKINESS FEATURES AND THEIR CORRELATION WITH THE GROUND TRUTH.

Description Model Correlation

Sum of camera pans. MP =
1

n

n∑

i=1

|pi| (8) 0.7458

Sum of absolute differences of accumulated
camera pan and filtered camera pan.

MPF =
1

n

n∑

i=1

|pai − pfi | (9) 0.7874

Sum of camera tilts. MT =
1

n

n∑

i=1

|τi| (10) 0.8006

Sum of absolute differences of accumulated
camera tilt and filtered camera tilt.

MTF =
1

n

n∑

i=1

|τai − τf | (11) 0.8192

Sum of average of camera pan and tilt. MPT =
1

n

n∑

i=1

|pi|+ |τi|
2

(12) 0.7799

Sum of average of absolute differences be-
tween accumulated camera pan tilt and fil-
tered pan tilt [7].

MTPF =
1

n

n∑

i=1

|pai − pfi |+ |τai − τf |
2

(13) 0.8219

Sum of diagonal camera motions MR =
1

n

n∑

i=1

√
p2i + τ2i (14) 0.7766

Sum of absolute differences of diagonal
accumulated camera motion and filtered di-
agonal camera motion [3].

MRF =
1

n

n∑

i=1

√
(pai − pfi )

2 + (τai − τfi )
2 (15) 0.8208

Alam et al. [1], Luo et al. [4] ψ =
ns

n
(16) 0.7895

B. Parameter Fusion

[1] IT IS CLEAR FROM THE EARLIER DESCRIPTION
THAT PAN AND TILT ARE NON-LINEARLY RELATED
TO THE PERCEIVED SHAKINESS. THEREFORE, FIRST
WE MEASURE THE NON-LINEAR TERMS AND THEN
FUSE THEM LINEARLY.

[2] WE CHOOSE TWO PARAMETERS FOR FUSION.
FIRST ONE TO REPRESENT THE GROSS MOTION
AMOUNT, USING THE BEST FEATURE PRESENT IN TA-
BLE, WHICH IS FRACTIONAL SHAKY FRAMES ψ. THE
SECOND PARAMETER CAPTURES THE DISTRIBUTION
OF THE SHAKY FRAMES, WHICH IS CAPTURED IN
MOVES.

[3] A HIGH CORRELATION MEANS TWO PARAM-

ETERS ARE LINEARLY CORRELATED WITH EACH
OTHER. WE ALSO KNOW THAT THE HYPERPLANE
PASSES THROUGH ORIGIN BECAUSE ZERO MOTION
MEANS ZERO SHAKINESS. THEREFORE, WE USE LIN-
EAR REGRESSION WITH ZERO INTERCEPT TO OBTAIN
THE PARAMETERS.

We have four indicative parameters for shakiness measure-
ment: pan (MPF ), tilt (MTP ), number of shaky frames (ψ),
and number of moves (µ). All these parameters increase the
shakiness positively and monotonically. Therefore, we propose
to fuse the four parameters with a linear regression model as
follows:

S = c+ βp ∗MPF + βt ∗MTF + βf ∗ ψ + βm ∗ µ (22)

The coefficients of the model are estimated by minimizing
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online selection phases namely filtering, classification, and selec-
tion. At any given time, the following steps are taken to select the
most suitable video at current instant:

1. Filtering: In the filtering step, we determine videos that are
unusable by comparing occlusion, shakiness, and tilt scores
against empirically determined thresholds. The remaining
videos are passed to the classification stage.

2. Classification: The selected cameras are classified as one
of right, center, and left according to the capturing angle.
Further, according to the viewing distance from the stage,
they are classified as near or far.

3. Class Prediction: According to the class of currently se-
lected video, and class transition probabilities learned from
professionally edited videos, a most suitable class is pre-
dicted and videos from that class are selected for further con-
sideration.

4. Video Selection: The classified cameras are further ranked
with respect to a combined score of video quality, diversity,
and shakiness. The video with highest score is selected.

5. Shot Length: The length of the video is selected based on
learned distributions and video quality. A higher quality video
is generally selected for longer time.

While filtering and selection phase ensure view and video qual-
ity, the classification and diversity ensure that we select videos
recorded with different angles and viewing distances to provide a
complete and interesting coverage of the performance. We now
describe each component of the framework in detail.

3.3 View Quality
The view quality is measured in terms of three characteristics:

occlusion, shakiness, and camera tilt. The details of measurement
of each of these quantities is given below.

3.3.1 Occlusion
For both a stand mounted camera and a mobile camera, there

is always a chance of view occlusion. At crowded places, people
sometime do not notice the cameras recording the video and oc-
clude the performance view. Even if people notice the cameras,
they stand in front of or walk across the cameras, because the main
purpose of the performances is to entertain the audience who are
present at the venue rather than video recording. Therefore, we de-
tect the videos which are recorded by occluded cameras and filter
them out.
Occlusion detection methods are popular in the field of object

tracking [13, 19]. There methods employ various appearance mod-
els to seamlessly track multiple objects. In this case, the occlusion
occurs when an object is hidden behind another. In live perfor-
mances, this could be intentionally done by the performers, i.e.,
one performer coming in front of other. We are more interested in
detecting the audience blocking the view. Therefore, those works
are not applicable here.
We have developed an edge density based method to detect videos

with occluded views. The method is based on the assumption that
the objects that occlude the performance area will result in lower
edge density than the performance area. Therefore, the non-occluded
area of the image, which is far from the camera, will result in more
dense edge points than the occluded area. To differentiate between
homogeneous regions of the stage area, which could also have less

edge density, and occluded area; we perform connected compo-
nents on the edge image. Following are the steps of the occlusion
detection in a given image I:

• Edge Detection: In the first step, we calculate the presence of
an edge at each pixel location. Let Ie be the resulting binary
edge image:

Ie(x, y) =

{

1 if edge is detected at pixel I(x, y)
0 otherwise

(1)

• Edge Density: We convolve the edge image with a square
matrixW with all of its elements unity:

Id = Ie ⊙W (2)

The output of the operation gives the density of edges around
each pixel.

• Labeling the Patches: The image is now divided into patches
of block size b × b. Each patch is labeled as 1 if the sum of
edge densities is less that a threshold, else it is labeled as 0.

Ip(x′, y′) =

⎧

⎨

⎩

1 if the sum of edge densities in the
patch (x′, y′) is greater than threshold

0 otherwise.
(3)

The 1’s in the patch image shows potentially occluded re-
gions.

• Connected Components: There can be homogeneous regions
in the non-occluded area as well. These regions, however, are
generally small. Therefore, connected components operation
is performed to find the size of largest group of connected
patches with label 1, which corresponds to occluded region.

• Occlusion Score: To calculate the final occlusion score So,
we first calculate the fractional occluded region f in the con-
nected components output image, i.e.,

f =
No of 1 patches

Total number of patches
(4)

We also observed that generally the dynamic range of f is very
small. Therefore, we expand its range with an exponential function
to calculate the final score So:

So = 1− e−f (5)

The resulting occlusion scores for an example video sequence
are shown in the Figure 3. The sequence shows a person walking
across a camera, which is recording an outdoor performance. We
can see that as the person enters the camera view, the occlusion
score starts increasing. We obtained similar results for night videos
also, which are not shown due to space limitation. We found that
for a patch size of 20*15 pixels, videos with occlusion score more
than 0.2 are very bad, so these are filtered in the framework.

3.3.2 Tilt
In this work, we define tilt as the rotation of the camera around

horizontal axis. User’s generally do not like the videos recorded
by tilted cameras. Therefore, we detect the tilted camera views
and filter them. Here we use the heuristic that for a horizontally
placed camera, most of the lines in the view are horizontal, while
an inclined view generally has non-horizontal lines. The following
steps are taken to calculation tilt:

online selection phases namely filtering, classification, and selec-
tion. At any given time, the following steps are taken to select the
most suitable video at current instant:

1. Filtering: In the filtering step, we determine videos that are
unusable by comparing occlusion, shakiness, and tilt scores
against empirically determined thresholds. The remaining
videos are passed to the classification stage.

2. Classification: The selected cameras are classified as one
of right, center, and left according to the capturing angle.
Further, according to the viewing distance from the stage,
they are classified as near or far.

3. Class Prediction: According to the class of currently se-
lected video, and class transition probabilities learned from
professionally edited videos, a most suitable class is pre-
dicted and videos from that class are selected for further con-
sideration.

4. Video Selection: The classified cameras are further ranked
with respect to a combined score of video quality, diversity,
and shakiness. The video with highest score is selected.

5. Shot Length: The length of the video is selected based on
learned distributions and video quality. A higher quality video
is generally selected for longer time.

While filtering and selection phase ensure view and video qual-
ity, the classification and diversity ensure that we select videos
recorded with different angles and viewing distances to provide a
complete and interesting coverage of the performance. We now
describe each component of the framework in detail.

3.3 View Quality
The view quality is measured in terms of three characteristics:

occlusion, shakiness, and camera tilt. The details of measurement
of each of these quantities is given below.

3.3.1 Occlusion
For both a stand mounted camera and a mobile camera, there

is always a chance of view occlusion. At crowded places, people
sometime do not notice the cameras recording the video and oc-
clude the performance view. Even if people notice the cameras,
they stand in front of or walk across the cameras, because the main
purpose of the performances is to entertain the audience who are
present at the venue rather than video recording. Therefore, we de-
tect the videos which are recorded by occluded cameras and filter
them out.
Occlusion detection methods are popular in the field of object

tracking [13, 19]. There methods employ various appearance mod-
els to seamlessly track multiple objects. In this case, the occlusion
occurs when an object is hidden behind another. In live perfor-
mances, this could be intentionally done by the performers, i.e.,
one performer coming in front of other. We are more interested in
detecting the audience blocking the view. Therefore, those works
are not applicable here.
We have developed an edge density based method to detect videos

with occluded views. The method is based on the assumption that
the objects that occlude the performance area will result in lower
edge density than the performance area. Therefore, the non-occluded
area of the image, which is far from the camera, will result in more
dense edge points than the occluded area. To differentiate between
homogeneous regions of the stage area, which could also have less

edge density, and occluded area; we perform connected compo-
nents on the edge image. Following are the steps of the occlusion
detection in a given image I:

• Edge Detection: In the first step, we calculate the presence of
an edge at each pixel location. Let Ie be the resulting binary
edge image:

Ie(x, y) =

{

1 if edge is detected at pixel I(x, y)
0 otherwise

(1)

• Edge Density: We convolve the edge image with a square
matrixW with all of its elements unity:

Id = Ie ⊙W (2)

The output of the operation gives the density of edges around
each pixel.

• Labeling the Patches: The image is now divided into patches
of block size b × b. Each patch is labeled as 1 if the sum of
edge densities is less that a threshold, else it is labeled as 0.

Ip(x′, y′) =
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1 if the sum of edge densities in the
patch (x′, y′) is greater than threshold

0 otherwise.
(3)

The 1’s in the patch image shows potentially occluded re-
gions.

• Connected Components: There can be homogeneous regions
in the non-occluded area as well. These regions, however, are
generally small. Therefore, connected components operation
is performed to find the size of largest group of connected
patches with label 1, which corresponds to occluded region.

• Occlusion Score: To calculate the final occlusion score So,
we first calculate the fractional occluded region f in the con-
nected components output image, i.e.,

f =
No of 1 patches

Total number of patches
(4)

We also observed that generally the dynamic range of f is very
small. Therefore, we expand its range with an exponential function
to calculate the final score So:

So = 1− e−f (5)

The resulting occlusion scores for an example video sequence
are shown in the Figure 3. The sequence shows a person walking
across a camera, which is recording an outdoor performance. We
can see that as the person enters the camera view, the occlusion
score starts increasing. We obtained similar results for night videos
also, which are not shown due to space limitation. We found that
for a patch size of 20*15 pixels, videos with occlusion score more
than 0.2 are very bad, so these are filtered in the framework.

3.3.2 Tilt
In this work, we define tilt as the rotation of the camera around

horizontal axis. User’s generally do not like the videos recorded
by tilted cameras. Therefore, we detect the tilted camera views
and filter them. Here we use the heuristic that for a horizontally
placed camera, most of the lines in the view are horizontal, while
an inclined view generally has non-horizontal lines. The following
steps are taken to calculation tilt:

online selection phases namely filtering, classification, and selec-
tion. At any given time, the following steps are taken to select the
most suitable video at current instant:

1. Filtering: In the filtering step, we determine videos that are
unusable by comparing occlusion, shakiness, and tilt scores
against empirically determined thresholds. The remaining
videos are passed to the classification stage.

2. Classification: The selected cameras are classified as one
of right, center, and left according to the capturing angle.
Further, according to the viewing distance from the stage,
they are classified as near or far.

3. Class Prediction: According to the class of currently se-
lected video, and class transition probabilities learned from
professionally edited videos, a most suitable class is pre-
dicted and videos from that class are selected for further con-
sideration.

4. Video Selection: The classified cameras are further ranked
with respect to a combined score of video quality, diversity,
and shakiness. The video with highest score is selected.

5. Shot Length: The length of the video is selected based on
learned distributions and video quality. A higher quality video
is generally selected for longer time.

While filtering and selection phase ensure view and video qual-
ity, the classification and diversity ensure that we select videos
recorded with different angles and viewing distances to provide a
complete and interesting coverage of the performance. We now
describe each component of the framework in detail.

3.3 View Quality
The view quality is measured in terms of three characteristics:

occlusion, shakiness, and camera tilt. The details of measurement
of each of these quantities is given below.

3.3.1 Occlusion
For both a stand mounted camera and a mobile camera, there

is always a chance of view occlusion. At crowded places, people
sometime do not notice the cameras recording the video and oc-
clude the performance view. Even if people notice the cameras,
they stand in front of or walk across the cameras, because the main
purpose of the performances is to entertain the audience who are
present at the venue rather than video recording. Therefore, we de-
tect the videos which are recorded by occluded cameras and filter
them out.
Occlusion detection methods are popular in the field of object

tracking [13, 19]. There methods employ various appearance mod-
els to seamlessly track multiple objects. In this case, the occlusion
occurs when an object is hidden behind another. In live perfor-
mances, this could be intentionally done by the performers, i.e.,
one performer coming in front of other. We are more interested in
detecting the audience blocking the view. Therefore, those works
are not applicable here.
We have developed an edge density based method to detect videos

with occluded views. The method is based on the assumption that
the objects that occlude the performance area will result in lower
edge density than the performance area. Therefore, the non-occluded
area of the image, which is far from the camera, will result in more
dense edge points than the occluded area. To differentiate between
homogeneous regions of the stage area, which could also have less

edge density, and occluded area; we perform connected compo-
nents on the edge image. Following are the steps of the occlusion
detection in a given image I:

• Edge Detection: In the first step, we calculate the presence of
an edge at each pixel location. Let Ie be the resulting binary
edge image:

Ie(x, y) =

{

1 if edge is detected at pixel I(x, y)
0 otherwise

(1)

• Edge Density: We convolve the edge image with a square
matrixW with all of its elements unity:

Id = Ie ⊙W (2)

The output of the operation gives the density of edges around
each pixel.

• Labeling the Patches: The image is now divided into patches
of block size b × b. Each patch is labeled as 1 if the sum of
edge densities is less that a threshold, else it is labeled as 0.

Ip(x′, y′) =

⎧

⎨

⎩

1 if the sum of edge densities in the
patch (x′, y′) is greater than threshold

0 otherwise.
(3)

The 1’s in the patch image shows potentially occluded re-
gions.

• Connected Components: There can be homogeneous regions
in the non-occluded area as well. These regions, however, are
generally small. Therefore, connected components operation
is performed to find the size of largest group of connected
patches with label 1, which corresponds to occluded region.

• Occlusion Score: To calculate the final occlusion score So,
we first calculate the fractional occluded region f in the con-
nected components output image, i.e.,

f =
No of 1 patches

Total number of patches
(4)

We also observed that generally the dynamic range of f is very
small. Therefore, we expand its range with an exponential function
to calculate the final score So:

So = 1− e−f (5)

The resulting occlusion scores for an example video sequence
are shown in the Figure 3. The sequence shows a person walking
across a camera, which is recording an outdoor performance. We
can see that as the person enters the camera view, the occlusion
score starts increasing. We obtained similar results for night videos
also, which are not shown due to space limitation. We found that
for a patch size of 20*15 pixels, videos with occlusion score more
than 0.2 are very bad, so these are filtered in the framework.

3.3.2 Tilt
In this work, we define tilt as the rotation of the camera around

horizontal axis. User’s generally do not like the videos recorded
by tilted cameras. Therefore, we detect the tilted camera views
and filter them. Here we use the heuristic that for a horizontally
placed camera, most of the lines in the view are horizontal, while
an inclined view generally has non-horizontal lines. The following
steps are taken to calculation tilt:

online selection phases namely filtering, classification, and selec-
tion. At any given time, the following steps are taken to select the
most suitable video at current instant:

1. Filtering: In the filtering step, we determine videos that are
unusable by comparing occlusion, shakiness, and tilt scores
against empirically determined thresholds. The remaining
videos are passed to the classification stage.

2. Classification: The selected cameras are classified as one
of right, center, and left according to the capturing angle.
Further, according to the viewing distance from the stage,
they are classified as near or far.

3. Class Prediction: According to the class of currently se-
lected video, and class transition probabilities learned from
professionally edited videos, a most suitable class is pre-
dicted and videos from that class are selected for further con-
sideration.

4. Video Selection: The classified cameras are further ranked
with respect to a combined score of video quality, diversity,
and shakiness. The video with highest score is selected.

5. Shot Length: The length of the video is selected based on
learned distributions and video quality. A higher quality video
is generally selected for longer time.

While filtering and selection phase ensure view and video qual-
ity, the classification and diversity ensure that we select videos
recorded with different angles and viewing distances to provide a
complete and interesting coverage of the performance. We now
describe each component of the framework in detail.

3.3 View Quality
The view quality is measured in terms of three characteristics:

occlusion, shakiness, and camera tilt. The details of measurement
of each of these quantities is given below.

3.3.1 Occlusion
For both a stand mounted camera and a mobile camera, there

is always a chance of view occlusion. At crowded places, people
sometime do not notice the cameras recording the video and oc-
clude the performance view. Even if people notice the cameras,
they stand in front of or walk across the cameras, because the main
purpose of the performances is to entertain the audience who are
present at the venue rather than video recording. Therefore, we de-
tect the videos which are recorded by occluded cameras and filter
them out.
Occlusion detection methods are popular in the field of object

tracking [13, 19]. There methods employ various appearance mod-
els to seamlessly track multiple objects. In this case, the occlusion
occurs when an object is hidden behind another. In live perfor-
mances, this could be intentionally done by the performers, i.e.,
one performer coming in front of other. We are more interested in
detecting the audience blocking the view. Therefore, those works
are not applicable here.
We have developed an edge density based method to detect videos

with occluded views. The method is based on the assumption that
the objects that occlude the performance area will result in lower
edge density than the performance area. Therefore, the non-occluded
area of the image, which is far from the camera, will result in more
dense edge points than the occluded area. To differentiate between
homogeneous regions of the stage area, which could also have less

edge density, and occluded area; we perform connected compo-
nents on the edge image. Following are the steps of the occlusion
detection in a given image I:

• Edge Detection: In the first step, we calculate the presence of
an edge at each pixel location. Let Ie be the resulting binary
edge image:

Ie(x, y) =

{

1 if edge is detected at pixel I(x, y)
0 otherwise

(1)

• Edge Density: We convolve the edge image with a square
matrixW with all of its elements unity:

Id = Ie ⊙W (2)

The output of the operation gives the density of edges around
each pixel.

• Labeling the Patches: The image is now divided into patches
of block size b × b. Each patch is labeled as 1 if the sum of
edge densities is less that a threshold, else it is labeled as 0.

Ip(x′, y′) =

⎧
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1 if the sum of edge densities in the
patch (x′, y′) is greater than threshold

0 otherwise.
(3)

The 1’s in the patch image shows potentially occluded re-
gions.

• Connected Components: There can be homogeneous regions
in the non-occluded area as well. These regions, however, are
generally small. Therefore, connected components operation
is performed to find the size of largest group of connected
patches with label 1, which corresponds to occluded region.

• Occlusion Score: To calculate the final occlusion score So,
we first calculate the fractional occluded region f in the con-
nected components output image, i.e.,

f =
No of 1 patches

Total number of patches
(4)

We also observed that generally the dynamic range of f is very
small. Therefore, we expand its range with an exponential function
to calculate the final score So:

So = 1− e−f (5)

The resulting occlusion scores for an example video sequence
are shown in the Figure 3. The sequence shows a person walking
across a camera, which is recording an outdoor performance. We
can see that as the person enters the camera view, the occlusion
score starts increasing. We obtained similar results for night videos
also, which are not shown due to space limitation. We found that
for a patch size of 20*15 pixels, videos with occlusion score more
than 0.2 are very bad, so these are filtered in the framework.

3.3.2 Tilt
In this work, we define tilt as the rotation of the camera around

horizontal axis. User’s generally do not like the videos recorded
by tilted cameras. Therefore, we detect the tilted camera views
and filter them. Here we use the heuristic that for a horizontally
placed camera, most of the lines in the view are horizontal, while
an inclined view generally has non-horizontal lines. The following
steps are taken to calculation tilt:
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Figure 3: Occlusion detection. Figures (a)-(d) show the frames
100, 168, 339, and 400 of the test video respectively. Figure (e)
shows the corresponding occlusion score

• Line Detection: We use Hough transform to detect the straight
line in the image. Let l′i be the length of the ith line and o′i
the angle with respect to the horizontal line.

• Angle Restriction: We assume that the maximum tilt a cam-
era can have is less than ±π/4 and any line with the inclina-
tion above this angle is noise and not considered in calcula-
tion. Let the resulting orientation of l′i line be oi.

• The final tilt score St is calculated as absolute of the mean
weighted orientation and normalized by π/4:

St =
abs

(

1

Nl

∑Nl

i=1
oi ∗ li

)

π/4
(6)

where N l is the total number of lines in the image.

An example of tilt calculation is shown in Figure 4; the upper
row shows frames from the video and the figure in lower row shows
occlusion scores. The video clip is recorded by a mobile phone
camera. In between, the mobile user gets engaged in some other
activity, and the mobile phone gets tilted. We can observe in the
frames itself the straight lines getting tilted. It gets reflected in the
tilt score as shown in Figure 4 for frames 200 and 216. The videos
with a tilt score of 0.4 are found unusable and they are filtered.

3.3.3 Shakiness
Shakiness is calculated based on the method described in [4].

In this method, the pixel values are projected on horizontal and
vertical axes. The horizontal and vertical projections are matched
across the frames for calculating camera motion. A median filtered
is finally applied on the motion vectors to differentiate the shaki-
ness from the smooth camera motion. The final value of shakiness
score, Ss, is calculated by summing the absolute difference of orig-
inal motion vector and median filtered motion vector. The score is
normalized by calculating maximum difference empirically. For a
shakiness window of 100 frames, the normalization value is 300;
for any value above 300, Ss is saturated to 1.
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Figure 4: Tilt results. Figures (a)-(d) show the frames 100, 186,
200, and 286 of the test video respectively. Figure (e) shows the
corresponding tilt score

3.4 Learning
As mentioned earlier in Section 1, it is difficult to precisely enu-

merate all the rules which professional editors follow in selecting
a video and its corresponding shot length. In MoViMash, we pro-
pose to learn the behavior of professional editor statistically for use
in creating mashup. We use professionally edited videos for this
purpose. The rules are learned in terms of shooting angle, shoot-
ing distance, and shot length. Following are the steps taken in the
process of learning:

• At first, we divide the video into a sequence of shots and
record shot length.

• Each shot is classified as right (R), left (L), or center (C)
based on shooting angle (Figure 1).

• Depending on the distance of the recording device from the
stage, the videos are further classified as near (N ) or far (F )
(Figure 1).

• Based on both classifications, we define six states (also re-
ferred as classes in the paper) in which a video can be at any
time instant, i.e., CN , CF ,RN ,RF , LN , and LF .

• From the sequence of the shots, we calculate the state transi-
tion probabilities for the above described six states.

• We now feed the transition probabilities (transition matrix)
along with shot lengths (emission matrix) to an hiddenMarkov
model (HMM). The HMMgenerates a sequence of shot states
and their corresponding lengths.
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⎜

⎜

⎜

⎜

⎝

CN CF RN RF LN LF

CN 0 0.4 0.2 0.1 0.2 0.1
CF 0.6 0 0.1 0.1 0.1 0.1
RN 0.5 0.1 0 0.1 0.2 0.1
RF 0.2 0.2 0.4 0 0.1 0.1
LN 0.4 0.2 0.2 0.1 0 0.1
LF 0.2 0.2 0.1 0.1 0.4 0

⎞
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⎟

⎟

⎟

⎠
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Figure 3: Occlusion detection. Figures (a)-(d) show the frames
100, 168, 339, and 400 of the test video respectively. Figure (e)
shows the corresponding occlusion score

• Line Detection: We use Hough transform to detect the straight
line in the image. Let l′i be the length of the ith line and o′i
the angle with respect to the horizontal line.

• Angle Restriction: We assume that the maximum tilt a cam-
era can have is less than ±π/4 and any line with the inclina-
tion above this angle is noise and not considered in calcula-
tion. Let the resulting orientation of l′i line be oi.

• The final tilt score St is calculated as absolute of the mean
weighted orientation and normalized by π/4:

St =
abs

(

1

Nl

∑Nl

i=1
oi ∗ li

)

π/4
(6)

where N l is the total number of lines in the image.

An example of tilt calculation is shown in Figure 4; the upper
row shows frames from the video and the figure in lower row shows
occlusion scores. The video clip is recorded by a mobile phone
camera. In between, the mobile user gets engaged in some other
activity, and the mobile phone gets tilted. We can observe in the
frames itself the straight lines getting tilted. It gets reflected in the
tilt score as shown in Figure 4 for frames 200 and 216. The videos
with a tilt score of 0.4 are found unusable and they are filtered.

3.3.3 Shakiness
Shakiness is calculated based on the method described in [4].

In this method, the pixel values are projected on horizontal and
vertical axes. The horizontal and vertical projections are matched
across the frames for calculating camera motion. A median filtered
is finally applied on the motion vectors to differentiate the shaki-
ness from the smooth camera motion. The final value of shakiness
score, Ss, is calculated by summing the absolute difference of orig-
inal motion vector and median filtered motion vector. The score is
normalized by calculating maximum difference empirically. For a
shakiness window of 100 frames, the normalization value is 300;
for any value above 300, Ss is saturated to 1.
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200, and 286 of the test video respectively. Figure (e) shows the
corresponding tilt score

3.4 Learning
As mentioned earlier in Section 1, it is difficult to precisely enu-

merate all the rules which professional editors follow in selecting
a video and its corresponding shot length. In MoViMash, we pro-
pose to learn the behavior of professional editor statistically for use
in creating mashup. We use professionally edited videos for this
purpose. The rules are learned in terms of shooting angle, shoot-
ing distance, and shot length. Following are the steps taken in the
process of learning:

• At first, we divide the video into a sequence of shots and
record shot length.

• Each shot is classified as right (R), left (L), or center (C)
based on shooting angle (Figure 1).

• Depending on the distance of the recording device from the
stage, the videos are further classified as near (N ) or far (F )
(Figure 1).

• Based on both classifications, we define six states (also re-
ferred as classes in the paper) in which a video can be at any
time instant, i.e., CN , CF ,RN ,RF , LN , and LF .

• From the sequence of the shots, we calculate the state transi-
tion probabilities for the above described six states.

• We now feed the transition probabilities (transition matrix)
along with shot lengths (emission matrix) to an hiddenMarkov
model (HMM). The HMMgenerates a sequence of shot states
and their corresponding lengths.
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⎛

⎜

⎜

⎜
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⎝

1 2 3 4 5 6 7

CN 1/31 2/31 4/31 7/31 7/31 6/31 4/31
CF 3/12 4/12 2/12 1/12 1/12 1/12 0
RN 2/15 3/15 4/15 3/15 2/15 1/15 0
RF 3/10 4/10 2/10 1/10 0 0 0
LN 2/15 3/15 4/15 3/15 2/15 1/15 0
LF 3/10 4/10 2/10 1/10 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(8)
We use affine transformation to classify the video, giving an ac-

curacy of ≈ 77% on our dataset. However, since learning is one
time job, we performed manual classification of shots during the
learning phase to get accurate statistics. Equation 7 shows the
learned transition matrix while Equation 8 emission matrix. We
have carefully selected five videos (live group dances with length
of videos ranging from 210 to 300 seconds), which are profession-
ally edited and aired on television. We downloaded these videos
from YouTube.
These videos include concerts by professional bands and per-

formance at the Academy Awards ceremony. We observed that
in dance videos, the shot lengths are relatively smaller ( average
around 2.3 seconds) compared to solo singing videos ( average
around 3.5 seconds). This finding implies that the learning dataset
should comply with the type of performance for mashup. We also
observed that the average shot lengths for all five dance videos
ranged between 2.2 seconds to 2.4 seconds, showing little varia-
tions, which shows that a particular type of events have similar
pattern of transitions and shot lengths which can be learned and
applied to create online mashup.

3.5 Video Quality
We can have different quality videos because of the limitation of

recording devices, varied camera positioning, lighting conditions,
camera angle, and video recording skills of the person. To produce
aesthetically beautiful video, it is important to consider the quality
of the videos.We are considering the following aspects to obtain
video quality score:

• Blockiness: The blocking effect mainly comes due to poor
quality of data compression. To measure blockiness, we take
current image as sample and calculate its compression qual-
ity using the method described in [18]. The method generates
a score that takes a value between 1 and 10 (10 represents the
best quality, 1 the worst). We normalize the score between 0
and 1. Let Sb be the blockiness score.

• Blur: The video can be blurred due to many reasons such as
out-of-focus recording, camera movement etc. We are cal-
culating blur based on the method described in [5]. Let Sbr

be the blur score which varies between 0 to 1 (0 represents
blurred and 1 sharp).

• Illumination: There can be videos that are recorded in poor
lighting conditions. The purpose of including this metric in
quality measurement is to avoid selecting dark videos. The
illumination score for the image Sim (with width Nw and
height Nh) is calculated as average gray value, normalized
by 255.

Sim =
1

255
1

Nw ∗Nh

Nw
∑

x=0,

Nh
∑

y=0

I(x, y) (9)

• Contrast: It has also been found in the literature that an im-
age with good contrast is appreciated by the viewers [10].
Therefore, contrast is also chosen as one of the metrics. The
contrast score Sc is calculated as standard deviation of the
pixel intensities.

Sc =
1

255

√

√

√

√

1
Nw ∗Nh

Nw
∑

x=0,

Nh
∑

y=0

(I(x, y)− I)2 (10)

Its value varies from 0 to 1 where 1 is the desired value cor-
responding to high contrast.

• Burned Pixels: It has been identified that pixels that are
close to 255 or 0 are generally not informative [15]. If N b

is the number of such pixels, the quality score representing
burnt pixels is calculated as follows:

Sbp =

{

1−N b/(0.25 ∗N i) if N b/(0.25 ∗N i) < 1
0 otherwise

(11)
where N i is the total number of pixels in the image. In this
case, a value of 1 represents best quality, i.e., no burnt pixels;
while a value of 0 means at least 25% pixels are burnt.

The individual quality scores are multiplied to calculate overall
video quality score Sq , i.e.,

Sq = Sb × Sbr × Sim × Sc × Sbp (12)

We have chosen to multiply the individual scores because we
want to give priority to the videos that are good in all aspects.

3.6 Diversity
The aspect of diversity is included in the framework by calculat-

ing the similarity of the views of the videos selected in the recent
past. Let H be the history of the cameras that have been selected
so far. The history is stored as set of chronologically order tuples,
i.e.,

H = {(Ihj ,∆j)|1 ≤ j ≤ Nv} (13)

where Nv is the number videos selected in the recent past. Each
tuple has the following two entries:

• Ih - Snapshot from the selected cameras at the time of selec-
tion.

• ∆ - The time for which the particular camera is selected. It
is normalized between 0 to 1 by dividing each video duration
by the total time over which history is stored.

Let V S be the view similarity matrix:

V S = {vij |1 ≤ i ≤ n; 1 ≤ j ≤ Nv; ∀i = j, vij = 1} (14)

where n is number of cameras, and vij is the view similarity
measure between current frame from the ith video and jth frame
of the history. The motivation of defining the view similarity V S is
to select video with different views. The overall steps of diversity
calculation are as follows:

1. Determine the view similarity matrix V S by comparing cur-
rent frame with the frames stored in the history, i.e.,

vij = Diff(Ici , I
h
j ) (15)

where Ici is the current frame of ith camera, Ihj is the jth
frame of the history, andDiff can be any function to calcu-
late view similarity. We are using SSIM [17] for this purpose.

HMM 

1.  Start S0 = CN 
2.  Choose δ by sampling P(δ/St) 
3.  Choose St+1 by sampling P(St+1/St) 
4. Repeat 2-3 forever 
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Offline learning from Professionally Edited 
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Evaluation Dataset 
P1: Group dance  

(12 videos) 

P2: Group dance  
(12 videos) 

P3: Solo song  
( 5 videos) 

 
Link	-	http://www.jiku.org/datasets.html	

[1]	The	Jiku	mobile	video	dataset.	ACM	MMSys,2013.	
16	



Results 
“How likely will you recommend the video to a 
friend?” 

P1 P2 

Rating 

P3 Mean 

MoViMash 
Video quality alone 
Human edited 
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[*]	MoViMash:	Online	Mobile	Video	Mashup,	ACM	MM	2012,	(IF=1.22).				
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User Interfaces are designed to 
facilitate interaction between 

human and machine! 
 



I nudge you and speak louder 
when you are drowsy! 

 



 

Why same UI irrespective of 
different user states? 

 



Around 30% of accidents are 
due to driver fatigue! 



Purpose: Modulating the infotainment 
system user interface according to the 

fatigue level of the driver.  
 

Fatigue Detection 

Driver Behavior 

Sensor 
Signals 

Driver 
Actions 

UI Adaption 



Fatigue Detection Approaches 

1-   Computer vision 
2-   Physiological signs analysis 
3-   Driving performance 
    



Four performance cues 
and four context 

parameters! 



Performance cues 
1.  Steering wheel angular velocity 
2.  Grip force 
3.  Brake pedal 
4.  Gas pedal 



Contextual cues 
1.  Time of the day 
2.  Traffic 
3.  Weather 
4.  Time on task 



Context and performance cues are 
combined using a Bayesian 

Network 
 1.  works with limited features and 

training data 
2.  works with partial information 
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Figure 3: The DAG of the fatigue detection system. The observed variables are shown with shaded nodes while the latent
variable with a clear background.

Table 1: Karolinska Sleepiness Scale (KSS)

Level Description !"
1 Extremely alert "
2 Very alert "
3 Alert "
4 Rather alert "
5 Neither alert or sleepy "
6 Some signs of sleepiness "
7 Sleepy but no effort to stay awake "
8 Sleepy, some effort to stay awake "
9 Very sleepy, great effort to stay awake "

low the road signs. After each session, the users were asked
to rate their level of sleepiness using Karolinska Sleepiness
Scale (KSS) which is a subjective sleepiness scale [1]. KSS
consists of 9 scores range from 1=very alert to 9=very sleepy
as shown in Table 1. Depending on the level of sleepiness,
users rate their sleepiness using the KSS scores. Since users
did not provide ratings at all levels of the KSS (i.e. from
1 to 9), the scores are grouped into pins 1-3 4-5 6-7 8-9 as
in [20]. Moreover, the users’ ratings on KSS are validated
and compared to the results of the Heart Rate Variability
(HRV), which is considered a reliable measure of fatigue.
Most of the users had prior experience with video games.

4.3 Data collection and Discretization
Driving data are collected in every 0.1 second from steer-

ing wheel, pedals, and grip. Users were asked to drive for
one hour, and the system was designed to make a decision
every two minutes. We therefore had approximately 30 cases
per user. All users had a valid driver’s license, yet driving in
a simulator is different from driving in real life. We noticed
that users who had experience with video games were more
comfortable while driving in the experiment. A screenshot
of the driving game used to collect data is shown in Figure

5. Each node has a limited number of states or values. For
instance, the maximum and average angular velocity nodes
of the steering wheel have five states, as well as the aver-
age of grip force. Also, the nodes for the average pressure
applied to the gas and brake pedals have five states.

Figure 5: A screenshot of the driving game.

5. EVALUATION
In this section, we first validate the KSS ratings by an-

alyzing HRV patterns and then discuss the results of the
experiments in detail. We provide analysis of each sensor
followed by the system accuracy, and comparisons of the ac-
curacy with a non-personlized Bayesian network and single
cue fatigue detection system. We also provide a comparison
of the user interface properties that can be manipulated in
the adaptation mechanism.

5.1 Heart Rate Variability
The heart rate variability (HRV), which can be deter-

mined by the ECG signal, varies significantly in the different
states of sleepiness, such as alertness and fatigue [28] [24] .



Experiment: Apparatus 

terioration [12] [41] [32]. Therefore, the inclusion of such
information in BN will increase its accuracy.

3.4 Information Fusion
We use Bayesian Networks (BN) to fuse context and sen-

sory information. The main benefit of a BN is that it can
infer the unobserved event from the observed data. In order
to exploit principles of BN, the links between variables can
be quantified with conditional probabilities [36]. BNs have
the ability to reason under uncertainty [31]. In other words,
BN consists of nodes with arcs between the nodes, forming
a Directed Acyclic Graph (DAG). The arcs represent the
conditional dependency between the nodes. The joint dis-
tribution of all nodes providing DAG can be factored by the
following equation:

P (X1, .., (Xn)) =
n∏

i=1

P (Xi|Pa(Xi)) (1)

where Pa(Xi) is the parent of node Xi , and P (Xi|Pa(Xi))
defines the conditional distribution of Xi given its parents.
Bayesian inference can be carried out through Bayes’ the-

orem to update the probability estimate for a hypothesis in
light of new evidence, which can be simplified as follows:

P (S|M) =
P (M |S)P (S)

P (M)
(2)

where P (S|M) the probability S given M, P (M |S) the prob-
ability of M given S, P (S) the prior probability of S, and
P (M) the prior probability of M. Figure 3 shows the Di-
rected Acyclic Graph (DAG) used in Bayesian Network for
fatigue detection. With the available information of the
other nodes in DAG, we can infer the state or value of
’Fatigue’ node. There are many factors that contribute to
fatigue as well as its symptoms. Yet, we used several pa-
rameters that are shown in Figure 3. These parameters can
be acquired easily in modern cars since most modern cars
are equipped with advanced sensors and have the required
computing facilities controlling their functions. Moreover,
according to [18] fatigue signs differ from one person to an-
other depending on age, health, and many other factors. As
a result, sensory observation might be incomplete. There-
fore, the complexity of fatigue detection requires the use of
methods such as probabilistic methods, evidential reason-
ing, neural network, and fuzzy theories. The authors in
[18] concluded that BN has ability to manage uncertainty,
capture dependency among network variables, and deploy
prior knowledge. Furthermore, BN is accurate even if the
dataset has missing values [17]. We use the Expectation-
Maximization algorithm (EM) algorithm to learn the pa-
rameters from the data and construct the Conditional Prob-
abilities Tables (CPTs).

4. EXPERIMENTAL SETUP
The user interface can be adapted in many ways such as

color, volume, illumination, etc. Evaluation of correct adap-
tation strategy requires psychological analysis of attention
through user studies [10]. In this work we mainly evaluate
the fatigue detection method. In future we want to complete
the feedback loop of Figure 1 and perform evaluation of the
whole system in realistic scenarios.

4.1 Apparatus
The four main devices used to set up the experiment are

shown in Figure 4. A two-wire Force Sensing Resistor that
is designed to be used for human touch control of electric
devices and robotics application is used. The force sensing
resistor is connected to an Ardino microcontroller board.
The microcontroller has been programmed to give readings
every 0.1 seconds. A Super Sports 3X Racing Wheel that
comes with pedals was used to simulate the driving expe-
rience on a 3D driving game made by Lightrock Entertain-
ment in Leipzig, Germany as shown in Figure 4. The Super-
Sports3X Racing Wheel continuously provides information
about the state of the steering wheel and pedals. In order
to collect data from the Ardino microcontroller and Super
Sports3X Racing Wheel, an application was designed using
VB.net. The steering wheel can rotate up to 90 degrees, ei-
ther left or right. The steering wheel continuously provides
information about its current angle. Similarly, the pedals
provide information on how much they are pushed, which
is referred to as the amount of pressure or force applied to
them. Having this information makes calculating the angu-
lar velocity of the steering wheel and the pressure applied to
the pedal possible. Zephyr HxM BT sensor to measure the
heart rate.

(a) Ardino microcon-
troller

(b) Steering Wheel and
pedals

(c) Force Sensing Resistor (d) Zephyr HxM BT

Figure 4: Apparatus of the experiment.

4.2 Experiment Protocol
The users were asked to drive for few minutes to be fa-

miliar with the driving game. The track in the games has
some curves and straight segments of road; also it has one
traffic light. The total time of driving was one hour divided
into six sessions, each session is 10 minutes long. The users
were asked to drive for three sessions while they are fatigued.
There are approximately two sleep peaks in the day, in af-
ternoon and early morning [15], [22], [33]. Therefore, users
were asked to drive three sessions at these times. At these
times, the likelihood of users being fatigued would be high
due to circadian rhythms. Moreover, most users come to
the lab in the morning; therefore, they would probably be
tired from working around 3-5 P.M. Also, the monotony of
driving games may be a factor in elevating process of being
fatigued. The other sessions were at times when users would
probably be fully awake and not tired. The track and driv-
ing conditions were the same for all the users. They were
asked to maintain 60 KPH and stay within the lane, and fol-



Experiment Protocol 
Users drove for one hour  and rated fatigue 
levels on KSS! 
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Figure 3: The DAG of the fatigue detection system. The observed variables are shown with shaded nodes while the latent
variable with a clear background.

Table 1: Karolinska Sleepiness Scale (KSS)

Level Description !"
1 Extremely alert "
2 Very alert "
3 Alert "
4 Rather alert "
5 Neither alert or sleepy "
6 Some signs of sleepiness "
7 Sleepy but no effort to stay awake "
8 Sleepy, some effort to stay awake "
9 Very sleepy, great effort to stay awake "

low the road signs. After each session, the users were asked
to rate their level of sleepiness using Karolinska Sleepiness
Scale (KSS) which is a subjective sleepiness scale [1]. KSS
consists of 9 scores range from 1=very alert to 9=very sleepy
as shown in Table 1. Depending on the level of sleepiness,
users rate their sleepiness using the KSS scores. Since users
did not provide ratings at all levels of the KSS (i.e. from
1 to 9), the scores are grouped into pins 1-3 4-5 6-7 8-9 as
in [20]. Moreover, the users’ ratings on KSS are validated
and compared to the results of the Heart Rate Variability
(HRV), which is considered a reliable measure of fatigue.
Most of the users had prior experience with video games.

4.3 Data collection and Discretization
Driving data are collected in every 0.1 second from steer-

ing wheel, pedals, and grip. Users were asked to drive for
one hour, and the system was designed to make a decision
every two minutes. We therefore had approximately 30 cases
per user. All users had a valid driver’s license, yet driving in
a simulator is different from driving in real life. We noticed
that users who had experience with video games were more
comfortable while driving in the experiment. A screenshot
of the driving game used to collect data is shown in Figure

5. Each node has a limited number of states or values. For
instance, the maximum and average angular velocity nodes
of the steering wheel have five states, as well as the aver-
age of grip force. Also, the nodes for the average pressure
applied to the gas and brake pedals have five states.

Figure 5: A screenshot of the driving game.

5. EVALUATION
In this section, we first validate the KSS ratings by an-

alyzing HRV patterns and then discuss the results of the
experiments in detail. We provide analysis of each sensor
followed by the system accuracy, and comparisons of the ac-
curacy with a non-personlized Bayesian network and single
cue fatigue detection system. We also provide a comparison
of the user interface properties that can be manipulated in
the adaptation mechanism.

5.1 Heart Rate Variability
The heart rate variability (HRV), which can be deter-

mined by the ECG signal, varies significantly in the different
states of sleepiness, such as alertness and fatigue [28] [24] .
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Figure 8: The average power applied on the gas pedal.
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Figure 9: Average pressure applied to the brake pedal.

tigued. Furthermore, some of them missed the traffic light
as a result of inattentiveness. The collected data indicates
that drivers used the brake more often when they were alert,
in order to correct their speed, slowdown in a curve when
needed, or stop when there was traffic light as shown.

5.5 Grip Forcel
Fatigue can be detected through grip force as in [6]. As

mention previously, fatigue causes muscles to relax, and the
collected data shows that the average grip force for most
users is less when they are fatigued, as shown in Figure 11.
Yet, for other users, it is higher, and that could be as a result
of the way they grip the steering wheel. Some users grip
the steering wheel with only a few fingers while their palms
remain on the front of the wheel; when they are fatigued
they would place their palms on the pressure sensor. This
shows us that driving behaviour differs from one driver to
another.

5.6 Multimedia Approach
In this experiment, we fuse different media streams and

contextual parameters. For each user, we designed a BN
with the same structure, and it was only trained on the data
acquired from that user. The accuracy of the personalized
BN was 100%. Indeed, the node ”Time of Day,” might have
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Figure 10: A comparison of using the brake in alert and
fatigued states.
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Figure 11: The average of grip force for the users.

had a huge impact on this result. In other words, users drove
while fatigued in times that are considered to be sleep peaks
which, as previously mentioned, are in the late afternoon
and early morning. As a result, the probability of being fa-
tigued is very high if the time of the day is considered to be
a sleep peak time. Therefore, we calculated the average of
fatigue detection accuracy of each user excluding the node
“Time of Day” from the network, and the results are shown
in Table 4. Furthermore, Figure 12a shows a comparison of
the results of each node. Also, Figure 12b shows a compari-
son of the average of the accuracy of the system according to
number of the cues that used to detect driver fatigue, such
as steering wheel, gas pedal, brake pedal, and grip force.
Table reftable:comb shows the average accuracy of different
combination of cues. The table supports the idea of us-
ing using multiple cues in detecting fatigue through driving
performance in order to increase the accuracy. The steer-
ing wheel movements have a significant effect in detecting
fatigue through driving performance (74%), and combine it
with other cues improves the results (96%). The gas pedal is
the weakest cue of fatigue with individual accuracy of 69%.

We had four sensors resulting in 6 combination of dual
media streams. We evaluated the accuracy for these com-
binations and found that the best performance (89 %) is
achieved by combining media streams of steering wheel and

The average of grip force for 
the users 
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tigued. Furthermore, some of them missed the traffic light
as a result of inattentiveness. The collected data indicates
that drivers used the brake more often when they were alert,
in order to correct their speed, slowdown in a curve when
needed, or stop when there was traffic light as shown.

5.5 Grip Forcel
Fatigue can be detected through grip force as in [6]. As

mention previously, fatigue causes muscles to relax, and the
collected data shows that the average grip force for most
users is less when they are fatigued, as shown in Figure 11.
Yet, for other users, it is higher, and that could be as a result
of the way they grip the steering wheel. Some users grip
the steering wheel with only a few fingers while their palms
remain on the front of the wheel; when they are fatigued
they would place their palms on the pressure sensor. This
shows us that driving behaviour differs from one driver to
another.

5.6 Multimedia Approach
In this experiment, we fuse different media streams and

contextual parameters. For each user, we designed a BN
with the same structure, and it was only trained on the data
acquired from that user. The accuracy of the personalized
BN was 100%. Indeed, the node ”Time of Day,” might have
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Figure 10: A comparison of using the brake in alert and
fatigued states.
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had a huge impact on this result. In other words, users drove
while fatigued in times that are considered to be sleep peaks
which, as previously mentioned, are in the late afternoon
and early morning. As a result, the probability of being fa-
tigued is very high if the time of the day is considered to be
a sleep peak time. Therefore, we calculated the average of
fatigue detection accuracy of each user excluding the node
“Time of Day” from the network, and the results are shown
in Table 4. Furthermore, Figure 12a shows a comparison of
the results of each node. Also, Figure 12b shows a compari-
son of the average of the accuracy of the system according to
number of the cues that used to detect driver fatigue, such
as steering wheel, gas pedal, brake pedal, and grip force.
Table reftable:comb shows the average accuracy of different
combination of cues. The table supports the idea of us-
ing using multiple cues in detecting fatigue through driving
performance in order to increase the accuracy. The steer-
ing wheel movements have a significant effect in detecting
fatigue through driving performance (74%), and combine it
with other cues improves the results (96%). The gas pedal is
the weakest cue of fatigue with individual accuracy of 69%.

We had four sensors resulting in 6 combination of dual
media streams. We evaluated the accuracy for these com-
binations and found that the best performance (89 %) is
achieved by combining media streams of steering wheel and



Accuracy for different 
cue combinations 
Table 5: The average accuracy of the system using different combination of cues.

Single cue Two cues Three cues
Media streams Result Media streams Result Media streams Result

Steering wheel 74 Steering wheel and Gas pedal 81
Steering wheel and Gas pedal and

Brake pedal
87

Gas pedal 69 Steering wheel and Brake pedal 84
Steering wheel and Gas pedal and

Grip force
90

Brake pedal 67 Steering wheel and Grip force 89
Steering wheel and Brake pedal

and Grip force
93

Grip force 71 Brake pedal and Gas pedal 77
Brake pedal and Gas pedal and

Grip force
78

Grip force and Gas pedal 67
Grip force and Brake pedal 88

Contextual parameters include weather conditions, current
traffic, time of the day, and time on task. Experimental re-
sults show that a personalized BN overcomes the issue of
individual differences and provides the best results. Steer-
ing wheel is the strongest cue of the fatigue while force on
gas pedal is the weakest. Depending on the resource avail-
ability, different combinations of the media streams can be
employed in the vehicle. We found that for two stream com-
bination, steering wheel and grip force provide best results.
For a three stream combination, steering wheel, brake pedal,
and gas pedal produce the best results.
Integrating individual’s behaviour with the user interface

allows for the personalization of the user interface. A per-
sonalized user interface would improve information recep-
tiveness as well as safety of the driver. The current work
mainly focuses on fatigue detection part of the feedback
loop. In the next phase of the work, we intend to develop
user interface adaptation strategies. It would be challeng-
ing to find user interface properties that can be modulated
to alert the driver without any safety risk. We want to
integrate the adaptation mechanism and fatigue detection
system to build a complete adaptive user interface. The fi-
nal system will be evaluated in realistic driving scenarios for
various fatigue levels. We also wish to investigate dynamic
sliding-window based auto-training of Bayesian Networks for
individual users as the user behaviour itself may vary over
time.
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Table 4: The average accuracy of users if the node ”Time of
Day” is excluded.

Users Excluding Time of Day
1 97
2 98
3 95
4 97
5 99
6 90
7 92
8 99

Average 96

grip force. Similarly, fusing media steams of steering wheel,
brake pedal, and gas pedal produced best results with 93%
accuracy for three sensor combination.
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Figure 12: Comparison

In contrast to our proposed personalized BN, a general BN
was tested. This generalized BN has the same structure; the
only difference is that it is trained on the data from all the
users. The learning process was not separated for each user.
Due to the differences in driving styles, the generalized

BN was not as accurate as the personalized BN. In order
to test the generalized BN, we had to re-do the discretiza-
tion process since the maximum value of each node is the
highest value obtained among all the users, as is the case
with the lowest value. After subtracting the highest and
lowest values of the following nodes: ”Maximum angular ve-
locity of the steering wheel,” ”Average angular velocity of

Table 6: Comparison of user interface properties for adap-
tation mechanism.

Property Type Intrusion Level Control
Text Visual Low Discrete
Colour Visual Low Continuous

Illumination Visual Low Continuous
Sound Auditory Medium Continuous

Orientation Visual High Discrete
Layout Visual Medium Discrete
Haptic Physical High Discrete
Tactile Physical High Discrete

the steering wheel,” ”Maximum pressure applied to the gas
pedal,” ”Average pressure applied to the gas pedal,” ”Maxi-
mum pressure applied to the brake pedal,””Average pressure
applied to the brake pedal,” and ”Average pressure applied
on the force sensing sensor,” the result was divided by five
(as we did in the discretization process of the personalized
BN). The average accuracy, without including the ”Time of
Day” node, was 65%.

There were several limitations that accompanied this study.
For instance, the size of the training data set was small since
users drove for one hour. Also, the system was tested on
eight users, which is considered to be a small number of
users. Furthermore, the experiment was conducted in a lab
using a driving simulator, which is different from driving in
real life. Also, the system was tested in one driving condi-
tion, and used a small training data set due to the limitation
of subjects’ schedules. Therefore, testing the system in real
life with more users and different conditions may be needed.

5.7 UI Adaptation
There are multiple properties of the user interface that

can be manipulated to influence driver’s attention. How-
ever, the goal should be to convey the information with
the minimal amount of distraction. Ideally, the adaptation
mechanism should stimulate some countermeasures to re-
duce the fatigue. As a consequence, the driver’s would be
more attentive instead of getting distracted. Development
of exact adaptation mechanism is out of scope of the paper
at this stage. Nonetheless, Table 6 provides a list of user
interface parameters that can be modulated according to
the fatigue level. While color, intensity and sound provide
a continuous control, the remaining properties are mostly
chosen from a finite set of options. The properties involving
physical manoeuvring, such as orientation and haptics, have
highest level of intrusion, which a driver cannot ignore. On
the other hand, visual properties are least intrusive.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose to adapt infotainment system

user interface according to the fatigue level of the driver for
better accessibility and safety. We take a multimedia ap-
proach to detect fatigue by monitoring the driving perfor-
mance. In the proposed method, we employ four differential
media streams to measure the driving performance: angu-
lar velocity of the wheel, force on brake pedal, force on gas
pedal, and grip force. The sensors used to capture these
media streams are non-intrusive and robust to operating en-
vironment. We fuse these media streams along with the
contextual parameters to detect the driver’s fatigue level.
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ever, the goal should be to convey the information with
the minimal amount of distraction. Ideally, the adaptation
mechanism should stimulate some countermeasures to re-
duce the fatigue. As a consequence, the driver’s would be
more attentive instead of getting distracted. Development
of exact adaptation mechanism is out of scope of the paper
at this stage. Nonetheless, Table 6 provides a list of user
interface parameters that can be modulated according to
the fatigue level. While color, intensity and sound provide
a continuous control, the remaining properties are mostly
chosen from a finite set of options. The properties involving
physical manoeuvring, such as orientation and haptics, have
highest level of intrusion, which a driver cannot ignore. On
the other hand, visual properties are least intrusive.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose to adapt infotainment system

user interface according to the fatigue level of the driver for
better accessibility and safety. We take a multimedia ap-
proach to detect fatigue by monitoring the driving perfor-
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media streams to measure the driving performance: angu-
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media streams are non-intrusive and robust to operating en-
vironment. We fuse these media streams along with the
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Conclusions 
•  Infotainment user interfaces should be 

adapted according to the driver fatigue 
level!  

•  Multiple cues improve fatigue detection 
accuracy! 

•  Bayesian networks are appropriate for 
fatigue detection and UI modulation!  
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Fig. 7: Comparison between the performance of DST and previous work against the actual values

teresting. Such pictures are detected as F2F interactions and
events, resulting in overestimation.

4 Literature Review

Understanding social context on OSNs has been an interest-
ing topic among researchers in general [6,7]. Recent stud-
ies have focused on using profile similarities and interac-
tion information in order to understand the social behaviors
of users. Most of these studies have focused on the rela-
tionships strength aspects of social analysis [8–10]. Some
works have used the homophily theory [10] while others
have adapted Granovetter definition of social relationship
[11]. Granovetter definition includes the amount of shared
time as a factor to measure social ties between people [12].
The work in [11] has considered the length of friendship on
social media as an indicator of the amount of shared time.
In these studies, they focused on raw traditional interactions
and their frequency. The previous work on this field did not
consider the aspect of face-to-face interactions between so-
cial users, while this work mainly exploits such interactions
to measure time spent together.

Human activities can be captured using cameras with
additional sensors such as accelerometers and GPS sensors
[13]. There has been an unprecedented growth in sensing
applications and products that utilize the information gained
from such sensors. Smart phones with built-in sensors have
notched a milestone of 1 million shipments in 2013 [14].
Such a growth has motivated the integration of sensors with
social networks in order to better monitor users activities
and understand their social behaviors [15]. The work of [16]
was among the first on exploring face-to-face interactions in
offline social networks using sensors technologies. The team

has developed a Sociometer device that records when peo-
ple are having conversation. Chudhary et.al [17] expanded
the previous work to describe people’s daily patterns of ac-
tivities. Oluritm et.al [1] investigated the impact of the dura-
tion of face-to-face interactions between human on defining
close friendship ties. The work in [2] has extended the scope
of previous analysis. Domestic partnerships and places of
recreation have been further investigated along with length
of face-to-face interactions.

Note that all the mentioned studies have been conducted
on offline social networks using physical sensors. In this
work, we consider both physical and virtual (i.e. soft) sen-
sors. In this paper, photo-interactions are used a soft sensor
for spatial, temporal and social context. Photos have shown
their popularity and reliability in discovering and understand-
ing real-interpersonal relationships between people [18–20].
preliminary version of DST [5] has only used photo-interactions
to compute the amount of time spent by two users. In our
work, we fuse geographical profile information with face-
to-face interactions in order to estimate better results.

5 Conclusion

In this work, we proposed Days-Spent-Together (DST) frame-
work to estimate the number of days people spent together
over a given period of time. DST algorithm uses soft-sensory
information along with geographical profile information from
OSNs in order to detect users’ real-life events. It performs
its estimation on individual events duration based on the
distance from users’ home and current city. With complete
information of individual events duration, we estimate the
overall amount of time that people spent together face-to-
face interacting. To validate the proposed framework, we
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The work in [11] has considered the length of friendship on
social media as an indicator of the amount of shared time.
In these studies, they focused on raw traditional interactions
and their frequency. The previous work on this field did not
consider the aspect of face-to-face interactions between so-
cial users, while this work mainly exploits such interactions
to measure time spent together.
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applications and products that utilize the information gained
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