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Automatic Movie
Making









Demo Video

Input Videos Output Mashup




How to synchronize
videos?



Obtain fingerprint of
the audio and match
the fingerprints!




How do human editors
choose video?

1. Remove videos with bad view quality!
— Shakiness, occlusion, tilt

2. Create a composition of videos taken
from multiple perspectives!

— Angle, distance



Shakiness

Step 1: Camera pan-tilt _Minimum Mean Absolute Error
2: Fil i __ __\2
Step 2: Filtered motion \/ (p¢ — pZ 24 (12— 1))
Step 3: Moves nP = clusters of shaky frames with ; > 0,
nP
Step 4: Normalization n
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Shakiness Results

S=c+ B, « MPEF + By x MTF + B¢ x )+ By *
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Occlusion

o 1 if edge is detected at pixel I(x,
I(e.y) = { g pixel I(z, y)

0 otherwise

0 otherwise.

No of 1 patches

~ Total number of patches

1 if the sum of edge densities in the
patch (z’, ") is greater than threshold
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Learning from Human Editors

Shot length (L)

Shot

Detection | Left-right-center (A)

Near-far (D)

* Goal: Learn the rules along with
uncertainty

* Probabilistic framework

 Hidden Markov Model
— State variables: D, A
— Observable: 0



HMM

Transition Matrix Emission Matrix

CN CF RN RF LN LF 1 2 3 4 5 6 7
CN /0 04 02 01 02 0.1 CN /1/31 2/31 4/31 7/31 7/31 6/31 4/31
cF [06 0 01 01 01 0.1 CF | 3/12 4/12 2/12 1/12 1/12 1/12 0
RN |05 01 0 01 02 01 RN | 2/15 3/15 4/15 3/15 2/15 1/15 0
RF |02 02 04 0 01 0.1 RF | 3/10 4/10 2/10 1/10 0 0 0
LN | 04 02 02 01 0 01 LN | 2/15 3/15 4/15 3/15 2/15 1/15 0
LF \02 02 01 01 04 0 LF \3/10 4/10 2/10 1/10 0 0 0

1. Start S, = CN

2. Choose 0 by sampling P(®/S))

3. Choose S,,, by sampling P(S,,,/S,)
4. Repeat 2-3 forever



MASHUP Framework

E Filter Shaky, Classify
m\ﬁr Occluded, (right-center-left)

D . :
$ Tilted videos (Close-far)

Learned
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Fvaluation Dataset

P1: Group dance
(12 videos)

P2: Group dance
(12 videos)

P3: Solo song
(5 videos)

Link - http://www.jiku.org/datasets.html

[1] The Jiku mobile video dataset. ACM MMSys,2013.
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Results

“How likely will you recommend the video to a
friend?”

Bl MoViMash
Video quality alone
Bl Human edited

P1 P2 P3 Mean

[*] MoViMash: Online Mobile Video Mashup, ACM MM 2012, (IF=1.22).
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User Interfaces are designed to
facilitate interaction between
human and machine!



| nudge you and speak louder
when you are drowsy!



Why same Ul irrespective of
different user states?



Around 30% of accidents are
due to driver fatigue!



Purpose: Modulating the infotainment
system user interface according to the
tfatigue level of the driver.

q =
Ul Adapti
[Fatigue Detectionw LN O
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Fatigue Detection Approaches

1- Computer vision
2- Physiological signs analysis
3- Driving performance



Four performance cues
and four context
parameters!



Performance cues

1. Steering wheel angular velocity
2. Qrip force

3. Brake pedal

4. Gas pedal



Contextual cues
1. Time of the day

2. Traffic
3. Weather
4. Time on task



Context and performance cues are
combined using a Bayesian
Network

1. works with limited features and
training data

2. works with partial information



Time of the day

J

Average grip force

Max SW angular
velocity

Average force
applied to brake
pedal

Average SW angular
Velocity

Mlaximum force
applied to brake
Pedal

Maximum force
applied to gas Pedal

Average force
applied to gas pedal




Experiment: Apparatus

(a) Ardino microcon- (b) Steering Wheel and
troller pedals

(c) Force Sensing Resistor (d) Zephyr HxM BT



Experiment Protocol

Users drove for one hour and rated fatigue
levels on KSS!




Karolinska Sleepiness

Scale (KSS)

Level Description

e

Extremely alert
Very alert
Alert
Rather alert

Neither alert or sleepy

Some signs of sleepiness
Sleepy but no effort to stay awake
Sleepy, some effort to stay awake

Very sleepy, great effort to stay awake

© 00 J O O i W I

O oO0odotdo sy




The average of grip force for
the users

500 n Alert

| = Fatigued

300+
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Average power on brake pedal

nAlert
m Fatiged




Accuracy for different
cue combinations

Single cue Two cues Three cues
Media streams | Result Media streams Result Media streams Result
Steering wheel 74 Steering wheel and Gas pedal 81 Steering wheel and Gas pedal and 87
Brake pedal
Gas pedal 69 Steering wheel and Brake pedal —_T Steering wheel.and Gas pedal and —90—
Grip force
Brake pedal 67 Steering wheel and Grip force 89 Steering wheel ?nd Brake pedal 93
and Grip force
Grip force 71 Brake pedal and Gas pedal 77 Brake pedal a.nd Gas pedal and 78
Grip force
Grip force and Gas pedal 67
Grip force and Brake pedal 88




Individual Vs Combined Accuracy
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Ul Adaption

Property Type Intrusion Level Control
Text Visual Low Discrete
Colour Visual Low Continuous
[N1lumination Visual Low Continuous
Sound Auditory Medium Continuous
Orientation Visual High Discrete
Layout Visual Medium Discrete
Haptic Physical High Discrete
Tactile Physical High Discrete




Conclusions

* Infotainment user interfaces should be
adapted according to the driver fatigue
level!

» Multiple cues improve fatigue detection
accuracy!

» Bayesian networks are appropriate for
fatigue detection and Ul modulation!



Video Storytelling with OSN Data

— Days spent .
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[*] Personality Detection Using Multiple Online Social Networks. Springer Multimedia Tools and
Applications (MTAP), 2014. [Impact Factor 1.05]. 39

[*] Towards Storytelling by Extracting Social Information from OSN, ACM MM 2014 (IF = 1.22)



