# Background Subtraction using Adaptive Gaussian Mixture Model<sup>1</sup>

Mukesh Saini

[1] Stauffer, Chris, and W. Eric L. Grimson. "Adaptive background mixture models for real-time tracking." Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on.. Vol. 2. IEEE, 1999.

# Layout

- Object detection
  - Challenges
  - GMM based method
- Tracking
  - Challenges
  - Particle filter based tracking



## **Object Detection**

• Goal: To detect the regions of the image that are semantically important to us:

- People
- Vehicle
- Buildings
- Application
  - Crowd management
  - Traffic management
  - Video compression, video surveillance, vision-based control, human-computer interfaces, medical imaging, augmented reality, and robotics...

## Object Detection in Images

- Subjectively defined
- Generally template based
- Mainly done by image segmentation



#### Object Detection in Videos

- Relatively Moving Object
- Relatively Static Background



The goal here is to differentiate the moving object from background!

#### Surveillance Video

- Static camera
- Background relatively static
- Subtract the background image from current image
- Ideally this will leave the moving objects
- This is not an ideal world...



#### Feature Based

- Objects are modeled in terms of features
- Features are chosen to handle changes in illumination, size and orientation
  - Shape based Very hard
  - Color based Low cost but not accurate





# Template Based

- Example template are given
- Object detection becomes matching features
- Image subtraction, correlation





#### **Motion Based**

- Model background
- Subtract from the current image
- Left are moving objects ©
- Remember! This is not a real world...



#### Problems in Modeling Background

- Acquisition noise
- Illumination variation
- Clutter
- New object introduced into background
- Object may not move continuously







# Outline of Object Detection

- Determine the background and foreground pixels
- Draw contours around foreground pixels
- Use heuristics to merge these contours



#### Ideal World

- Single value modeling of background
- Anything different is foreground

# Static Background

- Each pixel resulted from a particular surface under particular lightening
  - Single Gaussian is enough  $(\mu, \sigma)$
- If  $|P_t \mu| < 2.5 * \sigma$ 
  - Pixel belongs to background, else foreground



#### Illumination Variation

- Whenever a pixel matches the background Gaussian, update the background model i.e.
  - If  $|P_t \mu_t| < 2.5 * \sigma t$
  - Then  $\mu_{t+1} = (1 \alpha)\mu_t + \alpha\mu_t$
  - Standard deviation updated accordingly



#### Clutter

- Think of tree leaves...
- Multiple surfaces, still part of background
- Gaussian Mixture Model
- Update each Gaussian after matching





# Static Object Introduced

- Think of flower pot...
- Background model should adapt to this change
- Use Gaussian for new surface as well
  - Few extra Gaussians for the foreground





#### Measuring Persistence

- Modeled as prior weight w
- More persistent Gaussians belong to background
- If a new pixel does not match to any exiting Gaussians, least persistent Gaussian is replaced with a new Gaussian with:

$$\mu_t = P_t$$

And standard variation

 $\sigma_t$ = a large value

# **Background Selection**

- A background Gaussian will have
  - More persistence high *w*
  - Less variation low  $\sigma_t$
  - Sort Gaussians wrt  $w/\sigma_t$
- Pick top k Gaussians as background such that

$$\arg\min_{k} \left( \sum_{i=1}^{k} w_{i} > T \right)$$

If pixel belongs to one of these, it's a background pixel

## Adaptive Background Model

- Every pixel is modeled as mixture of Gaussians
- More persistent Gaussians belong to background and others to foreground
- The Gaussians are updated after each frame

#### Connecting the Dots

- The output of background modeling is a binary image
- Dilation/Erosion can further reduce noise
- Contour drawing
- Bounding boxes

## Revisit the problems

- Problems
  - Slow moving background clutter
  - New object introduced into background
  - Illumination variation
  - Object may not move continuously

# Thank You

• Q & A