
Lecture 3  

Audio Capture and 
Representation

Ref: Fundamentals of Multimedia



Audio is a wave phenomenon
• A speaker diaphragm moves back and fourth 

and generates longitudinal pressure waves 
• Ear perceives that as sound 
• No air, no sound



Pressure to Voltage Conversion

Pressure Voltage
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DigitalAnalogue
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Shannon’s Sampling Theorem
A signal s(t) with maximum frequency fMAX can be 
recovered if sampled at frequency  fS > 2 fMAX .

Condition on fS?

fS > 300 Hz

t)cos(100πt)πsin(30010t)πcos(503s(t) −⋅+⋅=

F1=25 Hz, F2 = 150 Hz, F3 = 50 Hz

F1 F2 F3

fMAX

Example

Nyquist frequency (rate) fN = 2 fMAX or fMAX or fS,MIN or fS,MIN/2
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Shannon’s Sampling Theorem
A signal s(t) with maximum frequency fMAX can be 
recovered if sampled at frequency  fS > 2 fMAX .

Condition on fS?

fS > 300 Hz

t)cos(100πt)πsin(30010t)πcos(503s(t) −⋅+⋅=

F1=25 Hz, F2 = 150 Hz, F3 = 50 Hz

F1 F2 F3

fMAX

Example

Nyquist frequency (rate) fN = 2 fMAX or fMAX or fS,MIN or fS,MIN/2

-When you go from analog to digital, you need to 
discretise both the time axis and the amplitude axis! 



• Time axis  
– sampling 

• Amplitude axis  
– quantization

Ref:	Dr.	Wang	Ye

Discretization



Frequency Components 
of Audio Signal
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Time domain To Frequency Domain

Time

~
Frequency

Any periodic signal can be represented in terms 
of its constituent frequencies!



Time Domain To Frequency Domain✬
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Figure 1: Spect rum of bandlimited signal g(t)

• The maximum frequency component of g(t) is f m . To recover
the signal g(t) exact ly from its samples i t has to be sampled at
a rate f s ≥ 2f m .

• The minimum requi red sampling rate f s = 2f m is called

t -fm fm

A non-periodic signal is represented with Continuous 
Frequency Response in Frequency Domain! 



Sampling Theorem 
A signal can be reconstructed faithfully if 
it is sampled at a rate at least twice the 
maximum frequency component in it!



Nyquist rate = 2fm 

Nyquist frequency = fs/2 



Aliasing
• When the sampling rate is less than Nyquist, it leads 

to aliasing! 

• Low frequency appears as high frequency

fs fm



No-Aliasing
• The original signal can be reconstructed faithfully 

using a low pass filter

fs fm



How do you ensure no aliasing?

Low pass filter the signal before 
passing to ADC!



What should be 
sampling rate for audio?



Audible Range: 20 Hz to 20 kHz

Voice Range: 0 to 4 kHz!

Sample (music) >40k samples 

Sample(speech) > 8k 
samples



Quantization
• Representing large set of values with a 

smaller set of values (called code words). 

• The large set may have continuous 
values also (i.e. infinite set)



Signal to Quantization 
Noise Ratio 

SQNRdb = 6.02NDB



Exercise: Quantize the following 5 bit signals 
into 2 bit signals!

{23, 12, 9, 5, 31, 16, 19, 4, 13, 22}

• There are four code-words: 0, 1, 2, 3 
• Obtain interval each code-word represents to obtain codes 
• Obtain representative value corresponding to each code-

word to decode 
• Put all this information in a table. 



Linear Vs Non-linear Quantization

• Linear Quantization: equal step 
• Non-linear Quantization: unequal 

steps



Pulse Code Modulation
• Each audio sample is represented by an 

integer code-word. 
• Linear PCM uses linear quantization and 

non-linear PCM  uses non-linear 
quantization 

• Non-linear PCM is also called companding



Weber’s Law

ΔStimulus 
 Stimulus 

ΔResponse α



100 200 500 600 1200 1300



Audio Perception Models148 6 Basics of Digital Audio

Fig. 6.6 Nonlinear transform
for audio signals
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Thus, nonuniform quantization schemes that take advantage of this perceptual
characteristic make use of logarithms. The idea is that in a log plot derived from
Eq. (6.8), if we simply take uniform steps along the s axis, we are not mirroring the
nonlinear response along the r axis.

Instead, we would like to take uniform steps along the r axis. Thus, nonlinear
quantization works by first transforming an analog signal from the raw s space into
the theoretical r space, then uniformly quantizing the resulting values. The result is
that for steps near the low end of the signal, quantization steps are effectively more
concentrated on the s axis, whereas for large values of s, one quantization step in r
encompasses a wide range of s values.

Such a law for audio is called µ-law encoding, or u-law, since it’s easier to write.
A very similar rule, called A-law, is used in telephony in Europe.

The equations for these similar encoding methods are as follows:
µ-law:

r = sign(s)
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where sign(s) =
{

1 if s > 0,
−1 otherwise

Figure 6.6 depicts these curves. The parameter of the µ-law encoder is usually set
to µ = 100 or µ = 255, while the parameter for the A-law encoder is usually set to
A = 87.6.



μ-law  
Companding

A-law  
Companding!
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How to Implement Companding?

1. Use non-uniform quantization steps in the 
ADC internally 

2. Use a 12 bit ADC and a software lookup 
table to get 8 bit codes 

3. Use additional nonlinear analog circuit 
before linear ADC



6.3 Quantization and Transmission of Audio 167
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Fig. 6.14 Pulse code modulation (PCM): a original analog signal and its corresponding PCM
signals; b decoded staircase signal; c reconstructed signal after low-pass filtering
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Fig. 6.15 PCM signal encoding and decoding

signal but, because of the sharp corners, also a theoretically infinite set of higher fre-
quency components (from the theory of Fourier analysis, in signal processing). We
know these higher frequencies are extraneous. Therefore, the output of the digital-
to-analog converter is in turn passed to a low-pass filter, which allows only frequen-
cies up to the original maximum to be retained. Figure 6.15 shows the complete
scheme for encoding and decoding telephony signals as a schematic. As a result
of the low-pass filtering, the output becomes smoothed, as Fig. 6.14c shows. For
simplicity, Fig. 6.14 does not show the effect of companding.



Companding in mainly used 
in Telephony!
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Table 6.2 Bitrate and bandwidth in sample audio applications

Quality Sampling Bits per Mono/ Bitrate Signal
rate sample Stereo (if uncompressed) bandwidth
(kHz) (kB/s) (Hz)

Telephone 8 8 Mono 8 200–3,400
AM radio 11.025 8 Mono 11.0 100–5,500
FM radio 22.05 16 Stereo 88.2 20–11,000
CD 44.1 16 Stereo 176.4 5–20,000
DVD audio 192 (max) 24 (max) Up to 6 channels 1,200.0 (max) 0–96,000 (max)

So for analog devices, the bandwidth was expressed in the frequency unit, called
Hertz (Hz), which is cycles per second (for example, heartbeats per second). For
digital devices, on the other hand, the amount of data that can be transmitted in a
fixed bandwidth is usually expressed in bitrate, i.e., bits per second (bps) or bytes
per amount of time.

In contrast, in Computer Networking, the term bandwidthrefers to the data rate
(bps) that the network or tranmission link can deliver. We will examine this issue in
detail in later chapters on multimedia networks.

Telephony uses µ-law (which may be written “u-law”) encoding, or A-law in
Europe. The other formats use linear quantization. Using the µ-law rule shown in
Eq. (6.9), the dynamic range—the ratio of highest to lowest nonzero value, expressed
in dB for the value 2n for an n-bit system, or simply stated as the number of bits—of
digital telephone signals is effectively improved from 8 bits to 12 or 13.

The standard sampling frequencies used in audio are 5.0125 kHz, 11.025 kHz,
22.05 kHz, and 44.1 kHz, with some exceptions, and these frequencies are supported
by most sound cards.

Sometimes it is useful to remember the kinds of data rates in Table 6.2 in terms of
bytes per minute. For example, the uncompressed digital audio signal for CD-quality
stereo sound is 10.6 megabytes per minute—roughly 10 megabytes—per minute.

6.1.9 Synthetic Sounds

Digitized sound must still be converted to analog, for us to hear it. There are two
fundamentally different approaches to handling stored sampled audio. The first is
termed FM, for frequency modulation. The second is called Wave Table, or just Wave,
sound.

In the first approach, a carrier sinusoid is changed by adding another term involving
a second, modulating frequency. A more interesting sound is created by changing
the argument of the main cosine term, putting the second cosine inside the argument
itself—then we have a cosine of a cosine. A time-varying amplitude “envelope”
function multiplies the whole signal, and another time-varying function multiplies


