# Lecture 3 Audio Capture and Representation

Ref: Fundamentals of Multimedia

#### Audio is a wave phenomenon

- A speaker diaphragm moves back and fourth and generates longitudinal pressure waves
- Ear perceives that as sound
- No air, no sound

#### **Pressure to Voltage Conversion**





-When you go from analog to digital, you need to discretise both the time axis and the amplitude axis!

#### Discretization

- Time axis
  - sampling
- Amplitude axis
  - quantization



# Frequency Components of Audio Signal











=

+















Any periodic signal can be represented in terms of its constituent frequencies!

#### **Time Domain To Frequency Domain**



A non-periodic signal is represented with Continuous Frequency Response in Frequency Domain!

# Sampling Theorem

A signal can be reconstructed faithfully if it is sampled at a rate at least twice the maximum frequency component in it!

#### Nyquist rate = $2f_m$

#### Nyquist frequency = fs/2

## Aliasing

- When the sampling rate is less than Nyquist, it leads to aliasing!
- Low frequency appears as high frequency



#### No-Aliasing

• The original signal can be reconstructed faithfully using a low pass filter



#### How do you ensure no aliasing?

# Low pass filter the signal before passing to ADC!

# What should be sampling rate for audio?

Audible Range: 20 Hz to 20 kHz Sample (music) >40k samples Voice Range: 0 to 4 kHz! Sample(speech) > 8k samples

# Quantization

- Representing large set of values with a smaller set of values (called code words).
- The large set may have continuous values also (i.e. infinite set)

# Signal to Quantization Noise Ratio SQNR<sub>db</sub> = 6.02NDB

# Exercise: Quantize the following 5 bit signals into 2 bit signals!

#### {23, 12, 9, 5, 31, 16, 19, 4, 13, 22}

- There are four code-words: 0, 1, 2, 3
- Obtain interval each code-word represents to obtain codes
- Obtain representative value corresponding to each codeword to decode
- Put all this information in a table.

#### **Linear Vs Non-linear Quantization**

- Linear Quantization: equal step
- Non-linear Quantization: unequal steps

## **Pulse Code Modulation**

- Each audio sample is represented by an integer code-word.
- Linear PCM uses linear quantization and non-linear PCM uses non-linear quantization
- Non-linear PCM is also called companding

# $\frac{\text{Weber's Law}}{\Delta \text{Response } \alpha} \frac{\Delta \text{Stimulus}}{\text{Stimulus}}$

#### 100 200 500 600 1200 1300

#### Audio Perception Models



#### Audio Perception Models

µ-law Companding

$$r = \frac{\operatorname{sign}(s)}{\ln(1+\mu)} \ln\left\{1+\mu\left|\frac{s}{s_{\mathrm{p}}}\right|\right\}$$

A-law Companding!

$$r = \begin{cases} \frac{A}{1+\ln A} \left(\frac{s}{s_{p}}\right), & \left|\frac{s}{s_{p}}\right| \leq \frac{1}{A} \\ \frac{\operatorname{sign}(s)}{1+\ln A} \left[1+\ln A \left|\frac{s}{s_{p}}\right|\right], & \frac{1}{A} \leq \left|\frac{s}{s_{p}}\right| \leq 1 \\ \text{where } \operatorname{sign}(s) = \begin{cases} 1 & \text{if } s > 0, \\ -1 & \text{otherwise} \end{cases}$$

#### How to Implement Companding?

- 1. Use non-uniform quantization steps in the ADC internally
- 2. Use a 12 bit ADC and a software lookup table to get 8 bit codes
- 3. Use additional nonlinear analog circuit before linear ADC



#### Companding in mainly used in Telephony!

| Quality   | Sampling rate | Bits per sample | Mono/<br>Stereo  | Bitrate<br>(if uncompressed) | Signal<br>bandwidth |
|-----------|---------------|-----------------|------------------|------------------------------|---------------------|
|           | (kHz)         |                 |                  | (kB/s)                       | (Hz)                |
| Telephone | 8             | 8               | Mono             | 8                            | 200–3,400           |
| AM radio  | 11.025        | 8               | Mono             | 11.0                         | 100–5,500           |
| FM radio  | 22.05         | 16              | Stereo           | 88.2                         | 20-11,000           |
| CD        | 44.1          | 16              | Stereo           | 176.4                        | 5–20,000            |
| DVD audio | 192 (max)     | 24 (max)        | Up to 6 channels | 1,200.0 (max)                | 0–96,000 (max)      |