
Towards an Architectural Element Recommender

System
(March, 2015 version)

Balwinder Sodhi

Dept. of Computer Science and Engineering

Indian Institute of Technology Ropar, PB 140001, India

Email: sodhi@iitrpr.ac.in

Abstract—When building a software system, one of the critical
steps is identifying suitable architectural elements which realize
the abstractions comprising the system. In several scenarios there
are several alternatives possible for realizing an abstraction, each
of which has different functional and non-function properties. For
instance, a data store (abstraction) can be realized using any of
the several RDBMS and NoSQL database products (elements).

As the size and complexity of a software system increases, the
process of mapping abstractions onto elements becomes difficult
and error prone if done manually. In this paper we propose
semantic computing based Architectural Element Recommender
System (AERS). Its goal is to assist an architect in analyses and
mapping of abstractions to elements, and deducing additional
facts about elements and abstractions. The AERS harvests
unstructured information about architectural elements available
from different sources and transforms it into useful semantic
knowledge which can be queried via a suitable interface. Details
of an implementation for the proposed AERS has also been
discussed. In this paper design of an early prototype of the
idea has been described. A limited verification of efficacy and
correctness of the proposed AERS has been done by querying it
for scenarios whose solutions are well known.

I. INTRODUCTION

Architecture design and finding solution for software design

problems in general is a creative process. Skills and past expe-

rience of an individual has a significant influence on the quality

of solutions that he/she produces for architecture/design tasks.

A high level sketch of typical path adopted by many architects

to design a solution is:

1) Search the individual, organization or community mem-

ory for similar problems handled in the past and recall

their solution. One or more candidate solution outlines

may come up.

2) From the candidate solution outlines obtained in pre-

vious step, choose suitable abstractions1 and create

structure of a solution to the problem at hand.

3) Identify suitable elements2 to realize abstractions that

comprise the solution determined in the preceding stage.

For instance, Apache TomcatTM, MicroSoft IISTMor

1In remainder of this paper we use the term abstraction or architectural

abstraction to refer to an abstract entity having a well defined function and
interface. Examples of abstractions are a data store, an application server and
a computer network etc.

2We use the term element or architectural element to refer to a concrete
entity which reifies an abstraction.

Red Hat JBossTMmay be the alternatives to choose

from when realizing an application server. Similarly,

MySQLTM(RDBMS engine) or MongoDBTM(NoSQL

engine) may viable options for realizing a data store

abstraction.

Elements using which architectural abstractions can be

realized are the basic building blocks usable in a variety of

solutions. An element in our context could be a component,

connector, module, framework or even an execution runtime.

In practice, one has to analyse and assess several competing al-

ternative elements (e.g. whether to use a Relational Data Base

Management System (RDBMS) or a NoSQL data store) when

mapping abstractions identified in the architectural solution

onto suitable elements. Such analysis is done on functional and

non-functional criteria. Key challenges in such analysis and

assessment process are: i) ensuring that one has not missed out

any important alternatives and ii) ensuring that suitable data

points about all alternatives have been objectively considered.

In several scenarios there is a large number of alternatives

possible for realizing an abstraction. For instance, in Apache

Software Foundation alone there are more than two dozen

web frameworks [1] available. As the size and complexity

of an architectural solution increases, the process of mapping

abstractions onto elements becomes difficult and error prone

if done manually.

Since the evaluation and selection of technology com-

ponents to be used in any significant project is often a

sophisticated process that involves the management of mul-

tiple stakeholder views, a plethora of quality requirements;

the processes of technology acquisition and evaluating for

“fitness for purpose” are expected to benefit from having

suitable automation support for such tasks. In this paper we

present (in Section II) the design of an Architectural Element

Recommender System (AERS) which assists an architect in

such tasks. One of its goals is to assist in analysing and rec-

ommending the abstraction to element mapping. This system

harvests raw information about elements available from differ-

ent sources such as open source repositories, software product

catalogues and data sheets etc. The raw element information is

transformed into an ontology by suitable semantic processing.

This ontology is then used in an automated semantic inference



engine which forms a key part of the proposed AERS. Details

of an implementation for the AERS is also discussed (in

Section III).

A. Related work

There has been significant interest in the community to

leverage semantic computing in systems and software engi-

neering contexts [2]. A framework that employs ontology-

based semantic search to retrieve architectural properties and

rationale behind those for existing software has been presented

by [3]. They focus on searching such architecture knowledge

from sources such as emails, meeting notes and wikis etc. An-

other similar framework that extracts architectural knowledge

(e.g. design decision rational etc.) from documentation related

to previous projects and domain specific literature is presented

in [4]. This framework relies on natural language processing

techniques for extracting such information. In this case the

extracted knowledge needs to be manually post processed

and fine-tuned by a knowledge engineer. Yet another piece

of similar work to recover, represent and explore rationale

information from text documents is presented by [5]; this work

relies on semantic indexing.

A framework for supporting the architectural modeling

phase has been described by [6]. It is mainly aimed at

modeling the domain of design patterns and for tasks related

to reasoning in the modeled domain.

Similarly, authors of [7] have employed a software ontology

in a semantic wiki to address architecture documentation

retrieval issues. An ontology driven method for supporting the

software architecture design and evaluation is presented in [8]

and [9] respectively. Similarly, semantic techniques have been

applied in an ontology driven builder pattern [10].

In [11] static analysis is used for mining specifications

which are later used in code search queries to find how an

API should be used. Internet as a source of knowledge is used

specifically by [12].

We observe that most automation effort such as discussed

above has: i) either focused on gathering generic architecture

design knowledge from existing software and then use it to

answer similar questions in newer scenarios (works reported

in [2]–[5]), or ii) aimed at some specific aspect of software

architecture design (works reported in [6]–[12]). The problem

of analysing and mapping architectural abstractions to suitable

concrete elements finds very limited automation support. In

this paper we propose the design of a system that can assist

an architect in abstraction to element mapping and analysis.

II. ELEMENT SELECTION FOR ARCHITECTURAL

ABSTRACTIONS

When faced with a decision choice scenario often our

judgement is determined by relevant prior experience acces-

sible to us from individual memory. An individual, such as

an architect, can have only a limited amount of experiential

memory. Further, such memory often tends to be organized

around broader topics related to the domains of exposure.

Collaborative sharing of knowledge helps to address the

Fig. 1. Major abstractions of a software application

Fig. 2. Few semantic attributes of a basic building block

limitations of individual memory, skill and experience. We

hypothesize that by applying semantic computing tools and

techniques it is possible to turn vast amount of publicly avail-

able unstructured content on systems and software engineering

topics into structured knowledge. A variety of decision support

systems that are built using semantic technologies have already

been reported in literature.

Considering one populous class of applications – data driven

applications – it is well known that the structure of a large

majority of those applications can fit into the general high-

level structure depicted in Fig.1. We argue that a majority of

applications comprise of basic building blocks (i.e. elements)

that are chosen from a finite set, Ψ. Size and the elements

of set Ψ change very slowly with time, and it may be popu-

lated by harvesting details of architectural elements available

from various providers. Using suitable semantic processing

(discussed later) it is possible to create an ontology of such a

set of basic building blocks. Such an ontology will evolve over

time as the set of elements Ψ evolves. Fig. 2 shows details of

an example node from such ontology.

A. Proposed Design

Various architectural views (e.g. logical, deployment etc.)

of a software application depict the constituent elements of



Fig. 3. Structure of proposed AERS

the application. Such elements have specific properties and

interact with each other in a well defined manner. With this

in mind, the design of our AERS is centred on the following

tenets:

• At a given time, t, there are only a finite number of

elements, Ψ, choosing from which one can build any pos-

sible software application. The set Ψ is expected to evolve

slowly over time. Examples of such elements include: i)

a data store element, ii) a programming runtime such as

Python or Java etc., iii) an input/output interface to allow

interacting with application.

• All elements present in Ψ can be organized as an

ontology. For each element, the ontology expresses its

properties and possible relationships which it may have

with other elements. Such ontology can be represented

as a graph G(V,E), where V is the set of vertices

and E is the set of edges in the graph. V is a set

containing elements and their properties, and E is the

set of relationships that can exist among elements of V .

This ontology is expected to evolve slowly over time.

• An inference machinery can be built on top of the above

ontology to answer queries about and deduce additional

facts about architectural abstractions and the elements

which can realize those abstractions.

We construct an Architectural Element Recommender Sys-

tem (AERS) as an ontology driven application. High level

structure of the proposed AERS is shown in Fig. 3. This AERS

uses an automated inference engine to, for instance, identify

additional alternatives to decisions concerning the elements.

Use of inference engine allows objective and methodical

comparison of decision choices.

III. IMPLEMENTATION DETAILS FOR AERS

We implemented a limited version of the AERS in order

to validate our approach and design. Fig. 4 shows the logi-

Fig. 4. POC implementation

cal structure of our implementation. A web crawler fetches

elements details from various sources and stores it locally.

These element detail documents, which typically contain un-

structured information, are then consumed by an Analysis

Engine (AE). The AE, built using the Apache UIMA [13]

framework, extracts useful semantic information from ele-

ment detail documents. The AE internally uses annotators

for extracting semantic information such as element types,

properties and interrelationships of elements. Annotators make

use of suitable vocabulary of software architecture/design

terms to accomplish its task. The rich semantic information

thus extracted by AE is represented as a graph and is stored in

a graph DB (we used neo4j [14]). A web application front end

is implemented for submitting queries such as for abstraction

to element mapping. The front end application invokes a

reasoning engine which uses neo4j’s Cypher query language

to derive useful truths about/from the concepts stored in graph

DB.

A. Harvested elements

For initial experiments we focused on harvesting element

data from repositories such as Apache Software Foundation

(ASF) and GitHub. We also gathered information from product

catalogues of some leading commercial software vendors.

From ASF we considered approximately 100 projects (i.e.

elements), from GitHub about 200 projects were considered.

About 50 elements were considered from various commercial

vendors. Projects were selected such that they provide neces-

sary elements as typically used in most data driven enterprise

application. The list included, but not limited to, elements such

as data store implementations (e.g. MySQL, MongoDB etc.),



middleware such as Java Message Service implementations,

web application development frameworks and encryption and

data compression libraries.

B. Example verification scenarios considered

In order to check the correctness of the recommendations

suggested by this AERS we selected three existing systems

whose features, design and implementation related documenta-

tion was available to us. We derived the abstraction to element

mappings that were present in the selected systems. These

mappings constituted the reference data for our verification.

The proposed AERS was queried for providing recommen-

dations for the abstractions selected from the derived refer-

ence. We then compared the AERS recommended elements

with those present in reference data. For example, in one

scenario we queried the AERS for elements corresponding to

abstraction middleware subject to the constraints: {supports
language java, can be used for data serialization}.

The AERS output included Apache Avro and Google Protocol

Buffers. Relevant part of the ontology that was used by AERS

is shown in Fig. 2. The results closely matched with the

expected results from our reference data. However, we also

observed that the correctness of results strongly depends on

“richness” of ontology used by AERS. That is, how much

complete and accurate are the relationships and attributes of

various elements and abstractions captured by the ontology.

This is not a surprise because our implementation infers the

recommendations by navigating the ontology.

Similarly, from this system (used ontology shown in Fig. 2)

we were able to deduce facts such as:

• CORBA, SOAP and Google Protocol

Buffers are possible alternatives to

Apache Avro

• An alternative to Apache Avro which

supports Python is Google Protocol

Buffers.

IV. CONCLUSION

For many abstractions that comprise a software solution

there can be several alternatives available to realize them.

Often the alternatives differ based on their functional and

non-functional properties. Realizing such abstractions typi-

cally involves identifying suitable architectural elements (e.g.

components, connectors, modules or programming runtimes

etc.) by careful analysis of the available alternatives. When

complexity of the software system being built, and the number

of available alternatives that can realize abstractions present

in such a system increases, an objective analysis of those

alternatives becomes quite difficult.

In this paper we have proposed an Architectural Element

Recommender System (AERS) which uses semantic tech-

niques to assist an architect in tasks such as analyses and

assessment of abstraction to element mapping. The AERS

harvests raw information about elements available from dif-

ferent sources (e.g. public websites and repositories). Through

suitable semantic processing we transform the raw information

about elements into an ontology. An automated semantic

inference engine, which forms a key part of the proposed

AERS, then uses this ontology to infer useful truths about

various elements.

A limited version of AERS has been implemented based on

the design highlighted in preceding paragraph. The semantic

analysis engine to extract (semi-automatically) the elements

and abstractions’ ontology from unstructured data was built

using Apache UIMA [13] framework. A graph database

(Neo4j [14]) was used to store the ontology as a graph. Neo4j

also provides a powerful graph query language – Cypher –

using which an automated reasoning engine is built. Efficacy

and correctness of the proposed AERS has been verified by

querying it for scenarios whose expected output was known.

These scenarios were derived/synthesized by examining exist-

ing software applications. As we had expected, the accuracy

of AERS output was influenced by the “richness” of ontology

used.

REFERENCES

[1] www.apache.org, “The apache software foundation projects,” http://
projects.apache.org/indexes/category.html#web-framework, The Apache
Software Foundation, retrieved: January 2015.

[2] P. Tetlow, J. Z. Pan, D. Oberle, E. Wallace, M. Uschold, and E. Kendall,
“Ontology driven architectures and potential uses of the semantic web
in systems and software engineering,” W3C Working Draft, 2005.

[3] A. M. Figueiredo, J. C. dos Reis, and M. A. Rodrigues, “Improving
access to software architecture knowledge an ontology-based search
approach,” International Journal Multimedia and Image Processing

(IJMIP), vol. 2, no. 1/2, 2012.
[4] M. Anvaari and O. Zimmermann, “Semi-automated design guidance

enhancer (sadge): A framework for architectural guidance development,”
in Software Architecture. Springer, 2014, pp. 41–49.

[5] C. Lpez, V. Codocedo, H. Astudillo, and L. M. Cysneiros, “Bridging the
gap between software architecture rationale formalisms and actual archi-
tecture documents: An ontology-driven approach,” Science of Computer

Programming, vol. 77, no. 1, pp. 66 – 80, 2012.
[6] T. Di Noia, M. Mongiello, and E. Di Sciascio, “Ontology-driven pattern

selection and matching in software design,” in Software Architecture.
Springer, 2014, pp. 82–89.

[7] K. de Graaf, A. Tang, P. Liang, and H. van Vliet, “Ontology-based
software architecture documentation,” in Software Architecture (WICSA)

and European Conference on Software Architecture (ECSA), 2012 Joint

Working IEEE/IFIP Conference on, Aug 2012, pp. 121–130.
[8] J. Sun, H. H. Wang, and T. Hu, “Design software architecture models

using ontology.” in SEKE, 2011, pp. 191–196.
[9] M. N. Omidvar and R. Vaziri, “Provide a method for evaluation of

software architecture using ontology,” International Journal of Computer

Applications, vol. 64, no. 16, 2013.
[10] A. Chaturvedi and T. V. Prabhakar, “Ontology driven builder pattern:

a plug and play component,” in ACM SAC 2014, Gyeongju, Korea -

March 24-28, 2014, 2014, pp. 1055–1057.
[11] A. Mishne, S. Shoham, and E. Yahav, “Typestate-based semantic code

search over partial programs,” in ACM SIGPLAN Notices, vol. 47, no. 10.
ACM, 2012, pp. 997–1016.

[12] M. Allamanis and C. Sutton, “Mining source code repositories at mas-
sive scale using language modeling,” in Mining Software Repositories

(MSR), 2013 10th IEEE Working Conference on. IEEE, 2013, pp.
207–216.

[13] www.apache.org, “Apache uima,” https://uima.apache.org/, The Apache
Software Foundation, retrieved: January 2015.

[14] neo4j.org, “Neo4j, the world’s leading graph database,” http://www.
neo4j.org/, neo4j.org, retrieved: January 2015.


