
Spatial Indexing Techniques for Secondary Memory

Introduction to Spatial

Computing CSE 555

Some slides adapted from Spatial Databases: A Tour by Shashi Shekhar Prentice Hall (2003)

 Goal: Store spatial objects A,B and
C in storage system such that
following queries can be executed
efficiently.

 Point Queries:

 Range Queries:

 Nearest Neighbor Queries

 Spatial Joins:

0 1 2 3

0

1

2
3

A

B

C

Scenario for Designing Spatial Indexes

 Goal: Store spatial objects A,B and C
in storage system such that following
queries can be executed efficiently.

 Point Queries:

 Given an object search if it exists in
the database or not

 Example: Return the spatial object
located at (3,2)

 Range Queries:

 Nearest Neighbor Queries

 Spatial Joins:

0 1 2 3

0

1

2
3

A

B

C

Scenario for Designing Spatial Indexes

 Goal: Store spatial objects A,B and C
in storage system such that following
queries can be executed efficiently.

 Point Queries:

 Range Queries:

 Return the objects which lie within
the defined range of x and y

 Example: return objects which lie in
the rectangle defined by 0<x<2
and 0<y<2

 Nearest Neighbor Queries

 Spatial Joins:

0 1 2 3

0

1

2
3

A

B

C

Scenario for Designing Spatial Indexes

 Goal: Store spatial objects A,B and C
in storage system such that following
queries can be executed efficiently.

 Point Queries:

 Range Queries:

 Nearest Neighbor Queries

 Find the nearest spatial object (or
k nearest spatial objects) of the
point (2,1)

 Spatial Joins:
0 1 2 3

0

1

2
3

A

B

C

Scenario for Designing Spatial Indexes

 Goal: Store spatial objects A,B and C
in storage system such that following
queries can be executed efficiently.

 Point Queries:

 Range Queries:

 Nearest Neighbor Queries

 Spatial Joins:

 Find the spatial objects which
intersect the object R10 1 2 3

0

1

2
3

A

B

C
R1

Scenario for Designing Spatial Indexes

 Had these objects been a 1-dimensional in
nature, e.g., real numbers, strings etc.

 A simple B+ tree would be constructed
over these.

 Can easily get O(log n) complexity for all
the queries (except the join query)
mentioned in the previous slides.

0 1 2 3

0

1

2
3

A

B

C
R1

Scenario for Designing Spatial Indexes

How to get ordering in 2-
Dimensions?

Once we get ordering we can try B+
tree again for spatial objects.

0 1 2 3

0

1

2
3

A

B

C
R1

Scenario for Designing Spatial Indexes

Approximate objects with cells.

Helps in getting a continuous space
to work with easer to handle.

Would have to map back whenever
necessary (for the queries and
results).

0 1 2 3

0

1

2
3

A

B

C

Towards Getting an Order Basics

First Attempt

Order on Y then X: (0,0) (1,0) (2,0)
(3,0) (0,1) (1,1) (2,1) (3,1) (0,2) (1,2)
(2,2) (3,2) (0,3) (1,3) (2,3) (3,3)

0 1 2 3

0

1

2
3

A

B

C

Towards Getting an Order

First Attempt

 Order on Y then X: (0,0) (1,0) (2,0) (3,0)
(0,1) (1,1) (2,1) (3,1) (0,2) (1,2) (2,2)
(3,2) (0,3) (1,3) (2,3) (3,3)

 Insert tuples <(0,0),C>; <(0,1),C>;
<(2,1),A>; <(3,1),A>; <(2,2),A>;
<(3,2),A>; <(0,3),B>; <(3,3),A>; in a B+
tree.

 These would be order of leaves in the
B+ tree

0 1 2 3

0

1

2
3

A

B

C

Towards Getting an Order

First Attempt (Y then X)

 Insert tuples <(0,0),C>; <(0,1),C>;
<(2,1),A>; <(3,1),A>; <(2,2),A>;
<(3,2),A>; <(0,3),B>; <(3,3),A>; in a
B+ tree.

 Range Query: Retrieve the objects
whose 2=<x=<3 and 2=<y=<30 1 2 3

0

1

2
3

A

B

C

Towards Getting an Order

Q

 First Attempt (Y then X)

 Insert tuples <(0,0),C>; <(0,1),C>;
<(2,1),A>; <(3,1),A>; <(2,2),A>;
<(3,2),A>; <(0,3),B>; <(3,3),A>; in a B+
tree.

 Range Query: Retrieve the objects
whose 2=<x=<3 and 2=<y=<3

0 1 2 3

0

1

2
3

A

B

C

Towards Getting an Order

Q

Not really in the

range but still got

in

Second Attempt (X then Y)

Order on X then Y:

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2)
(1,3) (2,0) (2,1) (2,2) (2,3) (3,0) (3,1)
(3,2) (3,3)

0 1 2 3

0

1

2
3

A

B

C

Towards Getting an Order

Range Query 2<x<3 & 2<y<3:
Little better this time

0 1 2 3

0

1

2
3

A

B

C

Towards Getting an Order

Q

Second Attempt (X then Y)

Order on X then Y:

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1)
(1,2) (1,3) (2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3)

C

0 1 2 3

0

1

2
3

A

B

How about in this scenario?

Q

Range Query: Retrieve all objects in this range 1=<x=<2 & y=3 ?

 Problem with these orderings:
Cells which are close to each
other might get spread out
and occupy places quite far
from each other.

Need a ordering which can
preserve spatial locality in both
x and y directions as much as
possible!

Cannot get 100%
0 1 2 3

0

1

2
3

A

B

C

Towards Getting an Order

Neighboring Cells but far

apart in the ordering

0 1 2 3

0

1

2
3

A

B

C

Z-Order curve

(0,3) (1,3) (2,3) (3,3)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (2,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

0 1 2 3

0

 1

2
3

0 1 2 3

0

1

2
3

A

B

C

Z-Order curve

00
11

01
11

10
11

11
11

00

10

01

10

10

10

11

10

00

01

01

01

10

01

11

01

00

00

01

00

10

00

11

00

0 1 2 3

0

 1

2
3

Write the X and Y

coordinates in Binary Form

0 1 2 3

0

1

2
3

A

B

C

Z-Order curve

0101 0111 1101 1111

0100 0110 1100 1110

0001 0011 1001 1011

0000 0010 1000 1010

0 1 2 3

0

 1

2
3

Interleave them to

create one string

0 1 2 3

0

1

2
3

A

B

C

Z-Order curve

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 10

0 1 2 3

0

 1

2
3

Convert the bit strings to its

corresponding decimal

0 1 2 3

0

1

2
3

A

B

C

Z-Order curve

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 10

0 1 2 3

0

 1

2
3

This is the order of cells

from this process

0 1 2 3

0

1

2
3

A

B

C

Z-Order curve

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 10

0 1 2 3

0

 1

2
3

This is the order of

cells from this process

0 1 2 3

0

1

2
3

A

B

C

Z-Order curve

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 10

0 1 2 3

0

 1

2
3

Visually its looks like we have Zs

on our map.

Hence the name Z-order curve!!

Z-Order curve

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 10

0 1 2 3

0

 1

2
3

0 1 2 3

0

1

2
3

A

B

C

Many neighboring cells thrown

far apart in the ordering

Fewer neighboring cells

are far in the ordering

Ordering:

X followed by Y

Z-ordering

0 1 2 3

0

1

2
3

A

B

C

Z-Order curve: Range Query

 Z-order: (0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1) (2,2) (2,3) (3,2) (3,3)

C

AAAB

Q

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 100

 1

2
3

0 1 2 3

 Z-order: (0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1) (2,2) (2,3) (3,2) (3,3)

0 1 2 3

0

1

2
3

A

B

C

Z-Order curve: Range Query

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 10

0 1 2 3

0

 1

2
3

C

AAAB

Q

Will this Approach of executing

Range Query always give correct

answer??

 Z-order: (0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1) (2,2) (2,3) (3,2) (3,3)

0 1 2 3

0

1

2
3

A

B

C

Z-Order curve: Range Query

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 10

0 1 2 3

0

 1

2
3

C

AAAB

Q

It may also include some objects

which are not part of answer. Need a

second step to clean those out.

Correctness of Range Query on Z-Order curves

 Consider again our previous example:

 Z-order: (0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1) (2,2) (2,3) (3,2) (3,3)

 Retrieved all records within this range and cross checked the result.

0 1 2 3

0

1

2
3

A

B

C

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 10

0 1 2 3

0

 1
2

3

Q

Correctness of Range Query on Z-Order curves

 Consider again our previous example:

 Z-order: (0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1) (2,2) (2,3) (3,2) (3,3)

 Retrieved all records within this range and cross checked the result.

0 1 2 3

0

1

2
3

A

B

C

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 10

0 1 2 3

0

 1
2

3

QWhat do we mean by Correctness?

Right answer would certainly be in the

result. But it may contain some other

information also which need to cleaned

Proof Sketch:

 Z-order: (0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1)
(2,2) (2,3) (3,2) (3,3)

 Retrieved all records within this range and cross checked the
result.

 For this approach to be correct we need to prove that all
the cells which are in the query rectangle of (1,1) and (2,2)
are between 4 and 9.

Correctness of Range Query on Z-Order curves

Proof Sketch:

Without loss of generalization let:

 LL = (xmin, ymin) is the lower left of the query rectangle

UR = (xmax, ymax) is the upper right of the query rectangle.

 Then we need to prove that all the cells with (xmin < x <
xmax) and (ymin < y < ymax) will have their Z-values
between z-values of LL and UR.

Correctness of Range Query on Z-Order curves

 Take two cell coordinates numbers: (x1,y1) and (x2, y2)

Case I: x2 > x1 and y1 = y2

 If x2 is greater than x1 that it will have “1” in at least one
higher position in binary form

Which means it will get “1” in at least one higher position in
its z-value.

 Implies that it will have a higher z-value.

Correctness of Range Query on Z-Order curves

Proof Sketch:

Case II: y2 > y1 and x1 = x2

 If y2 is greater than y1 that it will have “1” in at least one
higher position in binary form

Which means it will get “1” in at least one higher position in
its z-value

 Implies it will have a higher z-value.

Correctness of Range Query on Z-Order curves

Proof Sketch:

Case III: x2 > x1 and y2 > y1

 Similar argument of getting “1” in at least one higher
position in its z-value

 Implies it will have a higher z-value

Correctness of Range Query on Z-Order curves

Proof Sketch:

Now take any cell (x, y) inside the query rectangle defined
by LL and UU

Using our previous argument z-value of (x,y) would be greater
than z-value of LL and smaller that z-value of UR

 Basically we switch (x1,y1) and (x2, y2) with (x,y), LL, and UR
to make a argument.

Correctness of Range Query on Z-Order curves

Proof Sketch:

0 1 2 3

0

1

2
3

A

B

C

Z-Order curve: K-Nearest Neighbor Query

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 10

0 1 2 3

0

 1

2
3

Q

Query: What are the two closest neighbors of query point Q?

0 1 2 3

 Z-order: (0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1) (2,2) (2,3) (3,2) (3,3)

0 1 2 3 C

AAAB

0 1 2 3

0

1

2
3

A

B

C

Z-Order curve: K-Nearest Neighbor Query

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 10

0 1 2 3

0

 1

2
3

Q

0 1 2 3

 Z-order: (0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1) (2,2) (2,3) (3,2) (3,3)

0 1 2 3 C

AAAB

Nearest to Q we have object B and C in the Z-Order

Relative distances in Z-order don’t match up real ones

Q

0 1 2 3

0

1

2
3

A

B

C

Z-Order curve: KNN Query for K=1

 Z-order: (0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1) (2,2) (2,3) (3,2) (3,3)

C

AAAB

What about 1-nearest neighbor? Any Luck?

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 100

 1

2
3

0 1 2 3

0 1 2 3

0

1

2
3

A

B

C

Z-Order curve: KNN Query for K=1

 Z-order: (0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1) (2,2) (2,3) (3,2) (3,3)

C

AAAB

Get the NN from the z-values and issue a range query where

range is a circle, query point as the center and radius is the

distance to closest Z-value

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 100

 1

2
3

0 1 2 3

Z-Order curve: Algorithm for Spatial Join?

 Z-order: (0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1) (2,2) (2,3) (3,2) (3,3)

AAAB

Which Spatial Object overlaps with river R1?

0 1 2 3

0

1

2
3

A

B

C
R1

C

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 100

 1

2
3

0 1 2 3

Z-Order curve: Algorithm for Spatial Join?

 Z-order: (0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1) (2,2) (2,3) (3,2) (3,3)

AAAB

Sorted Z-order values of R1: (2,0) (2,1) (2,2) (3,2) (3,3)

Can be posed as a range query with end points as (2,0) (3,3)

0 1 2 3

0

1

2
3

A

B

C
R1

C

5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 100

 1

2
3

0 1 2 3

Z-Curves in larger spaces

Image source: wikipedia

Analytical Analysis of Z-Order curves
 Confusion Matrix:

 Precision:

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

 Recall:

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆

True

Positive
False

Positive

False

Negative

True

Negative

True Condition

P
re

d
ic

te
d

C
o

n
d

it
io

n

N
e

g
P
o

s

Pos Neg

Analytical Analysis of Z-Order curves

 Confusion Matrix:

 Precision:

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

 Recall:

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆

True

Positive
False

Positive

False

Negative

True

Negative

True Condition

P
re

d
ic

te
d

C
o

n
d

it
io

n

N
e

g
P
o

s

Pos Neg Thoughts on Precision

and Recall of the initial

step of previous range

query algorithm?

Analytical Analysis of Z-Order curves

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆

Thoughts on Precision

and Recall of the first

step of the range query

algorithm?

 Z-order: (0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1) (2,2) (2,3) (3,2) (3,3)

0 1 2 3

0

1

2
3

A

B

C

Q

Hilbert Curves

 Step1: Read in the n-bit binary representation of the x and y coordinates.

 Step 2: Interleave bits of the two binary numbers into one string

 Step3: Divide the string into from left to right into 2-bit strings

 Step4: Assign decimal values: “00” as 0; “01” as 1; “10” as 3; “11” as 2 and
put into an array is the same order as the strings occurred.

 Step5: For each number j in the array

 If j==0 then switch every following occurrence of 1 to 3 and vice-versa

 If j==3 then switch every following occurrence of 0 to 2 and vice-versa

 Step6: Convert each number in the array to its binary representation (2-bit
strings), concatenate from left to right and convert to decimal.

Hilbert Curves

0 1 2 3

A

B

C

(0,3) (1,3) (2,3) (3,3)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (2,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

0 1 2 3

0

 1

2
3

Hilbert Curves (Step 1)

0 1 2 3

A

B

C

00

11

01

11

10

11

11

11

00

10

01

10

10

10

11

10

00

01

01

01

10

01

11

01

00

00

01

00

10

00

11

00

0 1 2 3

0

 1

2
3

Write the X and Y

coordinates in Binary Form

Hilbert Curves (Step 2)

0101 0111 1101 1111

0100 0110 1100 1110

0001 0011 1001 1011

0000 0010 1000 1010

0 1 2 3

0

 1

2
3

Interleave them to create

one string

00

11

01

11

10

11

11

11

00

10

01

10

10

10

11

10

00

01

01

01

10

01

11

01

00

00

01

00

10

00

11

00

0 1 2 3

0

 1

2
3

Hilbert Curves (Step 3)

01 01 01 11 11 01 11 11

01 00 01 10 11 00 11 10

00 01 00 11 10 01 10 11

00 00 00 10 10 00 10 10

0 1 2 3

0

 1

2
3

Divide the string into from
left to right into 2-bit strings

0101 0111 1101 1111

0100 0110 1100 1110

0001 0011 1001 1011

0000 0010 1000 1010

0 1 2 3

0

 1

2
3

Hilbert Curves (Step 4)

11 12 21 22

10 13 20 23

01 02 31 32

00 03 30 33

0 1 2 3

0

 1

2
3

Assign decimal values: “00”
as 0; “01” as 1; “10” as 3;
“11” as 2

01 01 01 11 11 01 11 11

01 00 01 10 11 00 11 10

00 01 00 11 10 01 10 11

00 00 00 10 10 00 10 10

0 1 2 3

0

 1

2
3

Hilbert Curves (Step 5)

11 12 21 22

10 13 20 23

03 02 31 30

00 01 32 33

0 1 2 3

0

 1

2
3

If j==0 then switch every following
occurrence of 1 to 3 and vice-versa

If j==3 then switch every following
occurrence of 0 to 2 and vice-versa

11 12 21 22

10 13 20 23

01 02 31 32

00 03 30 33

0 1 2 3

0

 1

2
3

Hilbert Curves (Step 6)

0101 0110 1001 1010

0100 0111 1000 1011

0011 0010 1101 1100

0000 0001 1110 1111

0 1 2 3

0

 1

2
3

Concatenate and
Convert to Binary

11 12 21 22

10 13 20 23

03 02 31 30

00 01 32 33

0 1 2 3

0

 1

2
3

Hilbert Curves (Step 6)

5 6 9 10

4 7 8 11

3 2 13 12

0 1 14 15

0 1 2 3

0

 1

2
3

Concatenate and
Convert to Binary

0101 0110 1001 1010

0100 0111 1000 1011

0011 0010 1101 1100

0000 0001 1110 1111

0 1 2 3

0

 1

2
3

Hilbert Curves (Step 6)

5 6 9 10

4 7 8 11

3 2 13 12

0 1 14 15

0 1 2 3

0

 1

2
3

0 1 2 3

0

1

2
3

A

B

C

 Hilbert-curve: (0,0) (1,0) (1,1) (0,1) (0,2) (0,3) (1,3) (1,2) (2,2) (2,3) (3,3) (3,2) (3,1) (2,1) (2,0)
(3,0)

Hilbert Curves (Step 6)

5 6 9 10

4 7 8 11

3 2 13 12

0 1 14 15

0 1 2 3

0

 1

2
3

0 1 2 3

0

1

2
3

A

B

C

Hilbert-curve: (0,0) (1,0) (1,1) (0,1) (0,2) (0,3) (1,3) (1,2) (2,2) (2,3) (3,3)
(3,2) (3,1) (2,1) (2,0) (3,0)

Hilbert Curves Vs Z-Curves

5 6 9 10

4 7 8 11

3 2 13 12

0 1 14 15

0 1 2 3

0

 1

2
3 5 7 13 15

4 6 12 14

1 3 9 11

0 2 8 10

0 1 2 3

0

 1

2
3

Z-ordering Hilbert Curve

 Hilbert-curver: (0,0) (1,0) (1,1) (0,1) (0,2) (0,3) (1,3) (1,2) (2,2) (2,3) (3,3) (3,2) (3,1) (2,1) (2,0) (3,0)

0 1 2 3

0

1

2
3

A

B

C

Hilbert- curve: Range Query

C

AAB

Q

5 6 9 10

4 7 8 11

3 2 13 12

0 1 14 15

0 1 2 3

0

 1

2
3

Need to pic min and max Hilbert

curve values for this range !

Hilbert Curves in larger spaces

Image source and

more details at:

http://www.bic.m

ni.mcgill.ca/~mall

ar/CS-

644B/hilbert.html

Contemplating the Hilbert Curve Algo

 Step1: Read in the n-bit binary representation of the x and y coordinates.

 Step 2: Interleave bits of the two binary numbers into one string

 Step3: Divide the string into from left to right into 2-bit strings

 Step4: Assign decimal values: “00” as 0; “01” as 1; “10” as 3; “11” as 2 and
put into an array is the same order as the strings occurred.

 Step5: For each number j in the array

 If j==0 then switch every following occurrence of 1 to 3 and vice-versa

 If j==3 then switch every following occurrence of 0 to 2 and vice-versa

 Step6: Convert each number in the array to its binary representation (2-bit
strings), concatenate from left to right and convert to decimal.

Contemplating the Hilbert Curve Algo

11 12 21 22

10 13 20 23

01 02 31 32

00 03 30 33

0 1 2 3

0

 1

2
301 01 01 11 11 01 11 11

01 00 01 10 11 00 11 10

00 01 00 11 10 01 10 11

00 00 00 10 10 00 10 10

0 1 2 3

0

 1

2
3

Output after Step 4

Contemplating the Hilbert Curve Algo

11 12 21 22

10 13 20 23

01 02 31 32

00 03 30 33

0 1 2 3

0

 1

2
3

Step 6: We convert nums to binary,

concatenate and then convert to decimal

Say we Skip Step 5

and Jump to step 6
01

01

01

10

10

01

10

10

01
00

01
11

10
00

10
11

00

01

00

10

11

01

11

10

00

00
00

11
11

00
11

11

0 1 2 3

0

 1

2
3

Contemplating the Hilbert Curve Algo

Step 6: We convert nums to binary,

concatenate and then convert to decimal

Say we Skip Step 5

and Jump to step 6

5 6 9 10

4 7 8 11

1 2 13 14

0 3 12 15

0 1 2 3

0

 1

2
3

01

01

01

10

10

01

10

10

01

00

01

11

10

00

10

11

00

01

00

10

11

01

11

10

00

00
00

11
11

00
11

11

0 1 2 3

0

 1

2
3

Contemplating the Hilbert Curve Algo

Step 6: We convert nums to binary,

concatenate and then convert to decimal

Say we Skip Step 5

and Jump to step 6

5 6 9 10

4 7 8 11

1 2 13 14

0 3 12 15

0 1 2 3

0

 1

2
3

01

01

01

10

10

01

10

10

01

00

01

11

10

00

10

11

00

01

00

10

11

01

11

10

00

00
00

11
11

00
11

11

0 1 2 3

0

 1

2
3

Contemplating the Hilbert Curve Algo

Step 5 seems to be taking care of the

rotation and the reflection of the basic

shape inverted cup!!!

5 6 9 10

4 7 8 11

1 2 13 14

0 3 12 15

0 1 2 3

0

 1

2
35 6 9 10

4 7 8 11

3 2 13 12

0 1 14 15

0 1 2 3

0

 1
2

3

Addressing challenges of

2-Dimenions more directly

Grid Files

Basic idea- Divide space into cells by a

grid

 Store data in each cell in distinct disk

page

 A directory structure needed

 Efficient for find, insert, range and

nearest neighbor

 May have wastage of disk storage

space

 Non-uniform data distribution over

space ??

Grid Files
Refinement of basic idea into Grid Files

 Use non-uniform grids

 Linear scale store row and column boundaries

 Allow sharing of disk pages across grid cells

Grid Files (insertion example)

 Capacity of bucket = 3

J. Nievergelt and H. Hinterberger. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database
Systems, Vol. 9, No. 1, March 1994

Grid Files (insertion example)

 When the bucket overflows we split it.

 A new bucket is made.

 Records that lie in one half of the space are moved to

the new bucket.

J. Nievergelt and H. Hinterberger. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database
Systems, Vol. 9, No. 1, March 1994

Grid Files (insertion example)

 Bucket A overflows again.

J. Nievergelt and H. Hinterberger. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database
Systems, Vol. 9, No. 1, March 1994

Grid Files (insertion example)

 Bucket A overflows again.

J. Nievergelt and H. Hinterberger. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database
Systems, Vol. 9, No. 1, March 1994

Very Imp: Splitting of A is full

horizontal split, i.e., region of B

is also split. But B was not

overflowing, so both buckets

still point to B only

Grid Files (insertion example)

 Bucket A overflows again.

J. Nievergelt and H. Hinterberger. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database
Systems, Vol. 9, No. 1, March 1994

In Grid files, data space which

are the buckets is different from

the geographic spread of the

data.

Grid Files (insertion example)

 Bucket A overflows again.

J. Nievergelt and H. Hinterberger. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database
Systems, Vol. 9, No. 1, March 1994

Splits in any dimension are

made through and trough out.

This makes the task of maintain

linear scales easy

Grid Files (insertion example)
 One more split.

J. Nievergelt and H. Hinterberger. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database
Systems, Vol. 9, No. 1, March 1994

Grid Files (insertion example)
 One more split.

 Note that splits in any dimension are made through and trough.

J. Nievergelt and H. Hinterberger. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database
Systems, Vol. 9, No. 1, March 1994

Grid Files (Another example)

 Assume Bucket size = 3

X-axis

Y
-a

x
is

Bucket A

Grid Files (Another example)

 Assume Bucket size = 3

X-axis

Y
-a

x
is

Bucket A

Grid Files (Another example)

 Assume Bucket size = 3

X-axis

Y
-a

x
is

Bucket A

Overflow! Create a new

bucket; Split both scales

and the bucket

Grid Files (Another example)

 Assume Bucket size = 3

X-axis

Y
-a

x
is

Bucket A

Bucket B

Grid Files (Another example)

 Assume Bucket size = 3

X-axis

Y
-a

x
is

Bucket A

Bucket B

Grid Files (Another example)

 Assume Bucket size = 3

X-axis

Y
-a

x
is

Bucket A

Bucket B

Overflow! Create a new

bucket; Split both scales

and the bucket.

Grid Files (Another example)

 Assume Bucket size = 3

X-axis

Y
-a

x
is

Bucket A

Bucket B

Bucket C

Grid Files (Another example)

 Assume Bucket size = 3

X-axis

Y
-a

x
is

Bucket A

Bucket B

Bucket C

Grid Files (Another example)

 Assume Bucket size = 3

X-axis

Y
-a

x
is

Bucket A

Bucket B

Bucket C

Overflow! Create a

new bucket. Split

bucket A.

Grid Files (Another example)

 Assume Bucket size = 3

X-axis

Y
-a

x
is

Bucket A

Bucket B

Bucket C

Bucket D

Grid Files (Another example)

 Assume Bucket size = 3

X-axis

Y
-a

x
is

Bucket A

Bucket B

Bucket C

Bucket D

Overflow! Create a new

bucket; Split both scales

and the bucket.

Grid Files (Another example)

 Assume Bucket size = 3

X-axis

Y
-a

x
is

Bucket A

Bucket B

Bucket C

Bucket D

Bucket E

Grid Files (Splitting Policies)

 Splits:

 Can happen during insertion.

 Overflow of a bucket corresponding to a grid partition

leads to a split.

 Can also happen if bucket containing records from

several grid partition fills up.

 Splitting dimension can be changed alternatively.

 Splitting point may not always be the middle point, other

algorithms are also possible.

J. Nievergelt and H. Hinterberger. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database
Systems, Vol. 9, No. 1, March 1994

Grid Files (Querying example)
 X-partitions (0,1000,1500,1750,1875,2000)

 Y-partitions (a, f, k, p, z).

J. Nievergelt and H. Hinterberger. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database
Systems, Vol. 9, No. 1, March 1994

Query

1 bucket

Grid Files (Querying example)
 X-partitions (0,1000,1500,1750,1875,2000)

 Y-partitions (a, f, k, p, z).

J. Nievergelt and H. Hinterberger. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database
Systems, Vol. 9, No. 1, March 1994

Query

Say this is one

bucket

Grid Files (Querying example)
 X-partitions (0,1000,1500,1750,1875,2000)

 Y-partitions (a, f, k, p, z).

J. Nievergelt and H. Hinterberger. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database
Systems, Vol. 9, No. 1, March 1994

Query

Thoughts on

Precision and Recall

of the initial step of

this algorithm?

Say this is one

bucket

Grid Files (Merging Policies)

 Merging:

 Happens when data is being deleted.

 Buckets may be merged in case of underflow.

 Multiple policies can be developed for merging.

 Details beyond the scope of this course.

 Interested readers can refer the paper for details.

J. Nievergelt and H. Hinterberger. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Transactions on Database
Systems, Vol. 9, No. 1, March 1994

