
Spatial Indexing Techniques for Secondary Memory

Introduction to Spatial

Computing CSE 555

Some slides adapted from Spatial Databases: A Tour by Shashi Shekhar Prentice Hall (2003)

R-Trees and its Variants

Rectangles and Minimum Bounding Boxes

Some slides borrowed from “GIS a computational perspective: second edition” by M. Worboys CRC press 2004.

Minimum bounding box (MBB/MBR): the smallest rectangle
bounding a shape with its axes parallel to the sides of the
Cartesian frame

Using MBB, some queries may be answered without
retrieving the geometry of an object.

R-tree Properties and Invariants

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD
international conference on Management of data (SIGMOD '84)

 Balanced (similar to B+ tree)

 I is an n-dimensional rectangle of the form (I0, I1, ... , In-1)
where Ii is a range [a,b] [-,]

 Leaf node index entries: (I, tuple_id)

Non-leaf node entry: (I, child_ptr)

M is maximum entries per node.

m M/2 is the minimum entries per node.

R-tree Properties and Invariants

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD
international conference on Management of data (SIGMOD '84)

1. Every leaf (non-leaf) has between m and M records
(children) except for the root.

2. Root has at least two children unless it is a leaf.

3. For each leaf (non-leaf) entry, I is the smallest rectangle
that contains the data objects (children).

4. All leaves appear at the same level.

R-tree – Searching Algorithm

 Given a search rectangle S (or a geometry).

1. Start at root and locate all child nodes whose rectangle
I intersects S (via linear search).

2. Search the subtrees of those child nodes.

3. When you get to the leaves, return entries whose
rectangles intersect S.

 Searches may require inspecting several paths.

 Worst case running time is not so good.

R-tree – Example (1/2)

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD
international conference on Management of data (SIGMOD '84)

Find all rectangles

which contains this

query point

R-tree – Example (2/2)

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD
international conference on Management of data (SIGMOD '84)

The query point sits in

rectangles R11 and R14

R-tree – Insertion Algorithm (1/2)

 Traverse the tree top down, starting from the root.

At each level:

1. If there is a node whose directory rectangle contains the
MBB to be inserted, then search the subtree.

2. Else choose a node such that enlargement of its
directory rectangle is minimal, then search the subtree.

3. If more than one node satisfy this, then choose the one
with the smallest area.

 Repeat until a leaf node is reached.

R-tree – Insertion Algorithm (2/2)

 If the leaf node is not full then an entry [MBB, object-id] is
inserted.

 Else //the leaf node is full

1. Split the leaf node.

2. Update the directory rectangles of the ancestor nodes if
necessary.

At leaf level:

R-tree – Node Splitting

 Problem: Divide M+1 entries among two nodes so that it is unlikely that
the nodes are needlessly examined during a search.

 Objective: Minimize total area of the covering rectangles for both
nodes.

 Exponential algorithm.

 Quadratic algorithm.

 Linear time algorithm.

R-tree – Node Splitting: Exponential Algorithm

 Problem: Divide M+1 entries among two nodes so that it is unlikely that
the nodes are needlessly examined during a search.

 Solution: Minimize total area of the covering rectangles for both nodes.

 Exponential algorithm

 Try all possible combinations.

 Optimal results!

 Bad running time!

R-tree – Node Splitting: Quadratic Algorithm

 Problem: Divide M+1 entries among two nodes so that it is unlikely that
the nodes are needlessly examined during a search.

 Solution: Minimize total area of the covering rectangles for both nodes.

 Quadratic algorithm

1. Find pair of entries E1 and E2 that maximizes area(J) - area(E1) - area(E2)
where J is covering rectangle. J is the MBR containing only E1 and E2

2. Put E1 in one group, E2 in the other.

3. If one group has M-m+1 entries, put the remaining entries into the other
group and stop. If all entries have been distributed then stop.

4. For each entry E, calculate d1 and d2 where di is the minimum area
increase in covering rectangle of the group when E is added.

5. Find E with maximum |d1 - d2| and add E to the group whose area will
increase the least. If tied: (a) choose smaller area, (b) choose smaller
group

6. Repeat starting with step 3.

R-tree – Tree Adjustment during overflow

1. N = leaf node. If there was a split, then NN is the other
node.

2. If N is root, stop. Otherwise P = N’s parent and EN is its entry
for N. Adjust the rectangle for EN to tightly enclose new N.

3. If NN exists (i.e., N was split and NN is its second MBB from
split), add entry ENN (MBB corresponding to NN) to P. ENN

points to NN and its MBB rectangle tightly encloses NN.

4. If necessary, split P

5. Set N=P and go to step 2.

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD
international conference on Management of data (SIGMOD '84)

R-tree – Example (1/2)

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD
international conference on Management of data (SIGMOD '84)

R-tree – Example (2/2)

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD
international conference on Management of data (SIGMOD '84)

R-tree – Insertion Example

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD
international conference on Management of data (SIGMOD '84)

Nw Insert the new data point Nw

into the R-tree shown

R-tree – Insertion Example

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD
international conference on Management of data (SIGMOD '84)

Nw
Nw goes here creating an

overflow

R-tree – Insertion Example

Nw
Nw goes here creating an

overflow

R-tree – Example Splitting R3

Nw

R-tree – Example Splitting R3: Step 1

Nw

R-tree – Example Splitting R3: Step 2

Nw

R-tree – Example Splitting R3: Step 3

Nw

R-tree – Example Splitting R3

R3 R3’’

R-tree – Example Adjusting the tree

Nw

R3

M =3 m =2

R8 R9 R10

R4 R5

R-tree – Example Adjusting the tree

Nw

R3

M =3 m =2

R8 R9 R10

R4 R5

R3’’ should

go into this

R-tree – Example Adjusting the tree

Nw

R3

M =3 m =2

R8 R9 R10

R4 R5

Overflow:

This should

be split

R3’’

R-tree – Example Splitting R3 R3’’ R4 and R5

R3 R3’’

R-tree – Example Splitting R3 R3’’ R4 and R5

R3 R3’’
R4

R5

R-tree – Example Splitting R3 R3’’ R4 and R5

R3 R3’’

R4

R5

R-tree – Example Splitting R3 R3’’ R4 and R5

R3 R3’’
R4

R5

R-tree – Example Splitting R3 R3’’ R4 and R5

R3 R3’’

R4

R5R1

R1’

R-tree – Example Adjusting the tree

Nw

R3

M =3 m =2

R8 R9 R10

R4 R5Overflow:

This was split
R3’’

R1 R2

R-tree – Example Adjusting the tree

R3

M =3 m =2

R4 R5R3’’

R1 R2R1’

R-tree – Node Splitting: Quadratic Algorithm Example

Node to be Split

P2

P1

P3

P7

P5

P4

P6

M = 6

m = 3

R-tree – Node Splitting: Quadratic Algorithm Step 1

P2

P1

P3

P7

P5

P4

P6

Node to be Split

M = 6

m = 3

R-tree – Node Splitting: Quadratic Algorithm Step 2

P2

P1

P3

P7

P5

P4

P6

Node to be Split

M = 6

m = 3

R-tree – Node Splitting: Quadratic Algorithm Step 3

P2

P1

P3

P7

P5

P4

P6

Node to be Split

M = 6

m = 3

R-tree – Node Splitting: Quadratic Algorithm Step 4

P2

P1

P3

P7

P5

P4

P6

Node to be Split

M = 6

m = 3

R-tree – Node Splitting: Quadratic Algorithm Step 5

P2

P1

P3

P7

P5

P4

P6

Node to be Split

M = 6

m = 3

R-tree – Node Splitting: Quadratic Algorithm Step 6

P2

P1

P3

P7

P5

P4

P6

Node to be Split

M = 6

m = 3

