Introduction to Spatial Computing CSE 555

Spatial Indexing Techniques for Secondary Memory

R-Trees and its Variants

Rectangles and Minimum Bounding Boxes

- Minimum bounding box (MBB/MBR): the smallest rectangle bounding a shape with its axes parallel to the sides of the Cartesian frame
- Using MBB, some queries may be answered without retrieving the geometry of an object.

R-tree Properties and Invariants

- Balanced (similar to B+ tree)
- I is an n-dimensional rectangle of the form $\left(I_{0}, I_{1}, \ldots, I_{n-1}\right)$ where l_{i} is a range $[a, b] \in[-\infty, \infty]$
- Leaf node index entries: (I, tuple_id)
- Non-leaf node entry: (l, child_ptr)
- M is maximum entries per node.
- $m \leq M / 2$ is the minimum entries per node.

R-tree Properties and Invariants

1. Every leaf (non-leaf) has between m and M records (children) except for the root.
2. Root has at least two children unless it is a leaf.
3. For each leaf (non-leaf) entry, I is the smallest rectangle that contains the data objects (children).
4. All leaves appear at the same level.

R-tree - Searching Algorithm

- Given a search rectangle S (or a geometry).

1. Start at root and locate all child nodes whose rectangle I intersects S (via linear search).
2. Search the subtrees of those child nodes.
3. When you get to the leaves, return entries whose rectangles intersect S.

- Searches may require inspecting several paths.
- Worst case running time is not so good.

R-tree - Example (1/2)

Shape oif Data Object

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD international conference on Management of data (SIGMOD '84)

R-tree - Example (2/2)

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD international conference on Management of data (SIGMOD '84)

R-tree - Insertion Algorithm (1/2)

- Traverse the tree top down, starting from the root. At each level:

1. If there is a node whose directory rectangle contains the MBB to be inserted, then search the subtree.
2. Else choose a node such that enlargement of its directory rectangle is minimal, then search the subtree.
3. If more than one node satisfy this, then choose the one with the smallest area.

- Repeat until a leaf node is reached.

R-tree - Insertion Algorithm (2/2)

At leaf level:

- If the leaf node is not full then an entry [MBB, object-id] is inserted.
- Else //the leaf node is full

1. Split the leaf node.
2. Update the directory rectangles of the ancestor nodes if necessary.

R-tree - Node Splitting

- Problem: Divide $M+1$ entries among two nodes so that it is unlikely that the nodes are needlessly examined during a search.
- Objective: Minimize total area of the covering rectangles for both nodes.
- Exponential algorithm.
- Quadratic algorithm.
- Linear time algorithm.

Bad splıt

Good split

R-tree - Node Splitting: Exponential Algorithm

- Problem: Divide $M+1$ entries among two nodes so that it is unlikely that the nodes are needlessly examined during a search.
- Solution: Minimize total area of the covering rectangles for both nodes.
- Exponential algorithm
- Try all possible combinations.
- Optimal results!
- Bad running time!

Bad split

Good split

R-łree - Node Splitting: Quadratic Algorithm

- Problem: Divide M+1 entries among two nodes so that it is unlikely that the nodes are needlessly examined during a search.
- Solution: Minimize total area of the covering rectangles for both nodes.
- Quadratic algorithm

1. Find pair of entries E_{1} and E_{2} that maximizes area(J) - $\operatorname{area}\left(\mathrm{E}_{1}\right)$ - area $\left(\mathrm{E}_{2}\right)$ where J is covering rectangle. J is the MBR containing only E1 and E2
2. Put E_{1} in one group, E_{2} in the other.
3. If one group has $M-m+1$ entries, put the remaining entries into the other group and stop. If all entries have been distributed then stop.
4. For each entry E, calculate d_{1} and d_{2} where d_{i} is the minimum area increase in covering rectangle of the group when E is added.
5. Find E with maximum $\left|d_{1}-d_{2}\right|$ and add E to the group whose area will increase the least. If tied: (a) choose smaller area, (b) choose smaller group
6. Repeat starting with step 3.

R-tree - Tree Adjustment during overflow

1. $\mathrm{N}=$ leaf node. If there was a split, then NN is the other node.
2. If N is root, stop. Otherwise $P=N$'s parent and E_{N} is its entry for N . Adjust the rectangle for E_{N} to tightly enclose new N .
3. If $N N$ exists (i.e., N was split and $N N$ is its second MBB from split), add entry $E_{N N}$ (MBB corresponding to $N N$) to $P . E_{N N}$ points to NN and its MBB rectangle tightly encloses NN.
4. If necessary, split P
5. Set $N=P$ and go to step 2 .

R-tree - Example (1/2)

Shape oif Data Object

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD international conference on Management of data (SIGMOD '84)

R-tree - Example (2/2)

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD international conference on Management of data (SIGMOD '84)

R-tree - Insertion Example

Shape oif Data Object

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD international conference on Management of data (SIGMOD '84)

R-tree - Insertion Example

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD international conference on Management of data (SIGMOD '84)

R-tree - Insertion Example

R-tree - Example Splitting R3

R-tree - Example Splitting R3: Step 1

R-tree - Example Splitting R3: Step 2

R-tree - Example Splitting R3: Step 3

R-tree - Example Splitting R3

R-tree - Example Adjusting the tree

$$
M=3 m=2
$$

R-tree - Example Adjusting the tree

R-tree - Example Adjusting the tree

$$
M=3 m=2
$$

R-tree - Example Splitting R3 R3' ' R4 and R5

R-tree - Example Splitting R3 R3' ' R4 and R5

R-tree - Example Splitting R3 R3' ' R4 and R5

R-tree - Example Splitting R3 R3' ' R4 and R5

R-tree - Example Splitting R3 R3' ' R4 and R5

R-tree - Example Adjusting the tree

$$
M=3 m=2
$$

R1 R2

Overflow: ------> R3 R3" R4 R5

R-tree - Example Adjusting the tree

R-tree - Node Splitting: Quadratic Algorithm Example

$$
\begin{aligned}
& M=6 \\
& m=3
\end{aligned}
$$

R-tree - Node Splitting: Quadratic Algorithm Step 1

$$
\begin{aligned}
& M=6 \\
& m=3
\end{aligned}
$$

R-tree - Node Splitting: Quadratic Algorithm Step 2

$$
\begin{aligned}
& M=6 \\
& m=3
\end{aligned}
$$

R-tree - Node Splitting: Quadratic Algorithm Step 3

$$
\begin{aligned}
& M=6 \\
& m=3
\end{aligned}
$$

R-tree - Node Splitting: Quadratic Algorithm Step 4

$$
\begin{aligned}
& M=6 \\
& m=3
\end{aligned}
$$

R-tree - Node Splitting: Quadratic Algorithm Step 5

$$
\begin{aligned}
& M=6 \\
& m=3
\end{aligned}
$$

R-tree - Node Splitting: Quadratic Algorithm Step 6

$$
\begin{aligned}
& M=6 \\
& m=3
\end{aligned}
$$

