
Spatial Networks

Outline

1. Motivation, and use cases

2. Example spatial networks

3. Conceptual model

4. Need for SQL extensions

5. CONNECT statement

6. RECURSIVE statement

7. Storage and data structures

8. Algorithms for connectivity query

9. Algorithms for shortest path

Navigation Systems

• Historical
• Navigation is a core human activity for ages!

• Trade-routes, Routes for Armed-Forces

• Recent Consumer Platforms
• Devices: Phone Apps, In-vehicle, “GPS”, …

• WWW: Google Maps, MapQuest, …

• Services
• Display map around current location

• Compute the shortest route to a destination

• Help drivers follow selected route

Location Based Services

• Location: Where am I ?

– Geo-code: Place Name (or Street Address) <latitude, longitude>

– Reverse Geo-code: <latitude, longitude> Place Name

• Directory: What is around me?

– Where is the nearest Clinic? Restaurant? Taxi?

– List all Banks within 1 mile.

• Routes: How do I get there?

– What is the shortest path to get there?

– …

Limitations of Spatial Querying

• OGIS Simple Feature Types
• Supports Geometry (e.g., Points, LineStrings, Polygons, …)

• However, lack Graphs data type, shortest_path operator

• Traditional SQL
• Supports select, project, join, statistics

• Lacked transitive closure, e.g., network analysis (next slide)

• SQL3 added recursion & transitive closure

Spatial Network Analysis

• Route (A start-point, Destination(s))

– What is the shortest path to get there?

– What is the shortest path to cover a set of destinations?

• Allocation (A set of service centers, A set of customers)

– Assign customers to nearest service centers

– Map service area for each service center

• Site Selection (A set of customers, Number of new service centers)

– What are best locations for new service centers ?

Outline

1. Motivation, and use cases

2. Example spatial networks

3. Conceptual model

4. Need for SQL extensions

5. CONNECT statement

6. RECURSIVE statement

7. Storage and data structures

8. Algorithms for connectivity query

9. Algorithms for shortest path

Spatial Network Query Example

1. Find shortest path from a start-point to a destination

2. Find nearest hospital by driving distance

3. Find shortest route to deliver packages to a set of homes

4. Allocate customers to nearest service center

Railway Network & Queries

1. Find the number of stops on the Yellow

West (YW) route.

2. List all stops which can be reached

from Downtown Berkeley (2)

3. List the routes numbers that connect

Downtown Berkeley (2) & Daly City (5)

4. Find the last stop on the Blue West

(BW) route

River Network & Queries

1. List the names of all direct and indirect tributaries of Mississippi river

2. List the direct tributaries of Colorado

3. Which rivers could be affected if there is a spill in North Platte river

Spatial Networks: Three Examples

A Road

Network

A River

Network

A Railway

Network

Outline

1. Motivation, and use cases

2. Example spatial networks

3. Conceptual model

4. Need for SQL extensions

5. CONNECT statement

6. RECURSIVE statement

7. Storage and data structures

8. Algorithms for connectivity query

9. Algorithms for shortest path

Data Models of Spatial Networks

1. Conceptual Model
• Information Model: Entity Relationship Diagrams

• Mathematical Model: Graphs

2. Logical Data Model
• Abstract Data types

• Custom Statements in SQL

3. Physical Data Model
• Storage-Structures

• Algorithms for common operations

Modeling Roadmaps

Many Concepts, e.g.

• Roads (or streets, avenues)

• Road-Intersections

• Road-Segments

• Turns

• …

An Entity Relationship Diagram

Graph Models

• A Simple Mathematical Model

• A graph G = (V,E)

• V = a finite set of vertices

• E = a set of edges model a binary relationship between vertices

• Example

A Graph Model of River Network

• Nodes = rivers

• Edges = A river falls into another river

Pros and Cons of Graph Models

• Strength

• Well developed mathematics for reasoning

• Rich set of computational algorithms and data-structures

• Weakness

• Models only one binary relationship

• Implications

• A. Difficult to model multiple relationships, e.g., connect, turn

• B. Multiple graph models possible for a spatial network

Modeling Turns in Roadmaps

• Approach 1: Model turns as a set of connects

• Approach 2: Use hyper-edges (and hyper-graphs)

• Approach 3: Annotate graph node with turn information

Alternative Graph Models for Roadmaps

• Choice 1:

• Nodes = road-intersections

• Edge (A, B) = road-segment connects adjacent road-intersections A, B

• Choice 2:

• Nodes = (directed) road-segments

• Edge (A,B) = turn from road-segment A to road-segment B

• Choice 3:

• Nodes = roads

• Edge(A,B) = road A intersects_with road B

Quiz

Which of the following are usually not captured in

common graph models of roadmaps?

a) Turn restrictions (e.g., no U turn)

b) Road intersections

c) Road segments

d) All of the above

Outline

1. Motivation, and use cases

2. Example spatial networks

3. Conceptual model

4. Need for SQL extensions

5. CONNECT statement

6. RECURSIVE statement

7. Storage and data structures

8. Algorithms for connectivity query

9. Algorithms for shortest path

Data Models of Spatial Networks

1. Conceptual Model: Entity Relationship Diagrams, Graphs

2. Logical Data Model & Query Languages
• Abstract Data types

• Custom Statements in SQL

3. Physical Data Model: Storage-Structures, Algorithms

Transitive Closure

• Consider a graph G = (V, E)

• Transitive closure(G) = G* = (V*, E*), where

• V* = V

• (A, B) in E* if and only if there is a path from A to B in G.

Transitive Closure - Example

• Example

• G has 5 nodes and 5 edges

• G* has 5 nodes and 9 edges

• Note edge (1,4) in G* for

• path (1, 2, 3, 4) in G.

Transitive Closure - Example

• Example

• G has 5 nodes and 5 edges

• G* has 5 nodes and 9 edges

• Note edge (1,4) in G* for

• path (1, 2, 3, 4) in G.

Transitive Closure - Example

• Example

• G has 5 nodes and 5 edges

• G* has 5 nodes and 9 edges

• Note edge (1,4) in G* for

• path (1, 2, 3, 4) in G.

Transitive Closure - Example

• Example

• G has 5 nodes and 5 edges

• G* has 5 nodes and 9 edges

• Note edge (1,4) in G* for

• path (1, 2, 3, 4) in G.

Limitations of Original SQL

• Recall Relation algebra based languages

• Ex. Original SQL

• Can not compute transitive closure, e.g., shortest path!

Supporting Graphs in SQL

• Abstract Data Type (user defined)

• SQL3

• May include shortest path operation!

• Custom Statements
• SQL2 - CONNECT clause in SELECT statement

• For directed acyclic graphs, e.g. hierarchies

• SQL3 - WITH RECURSIVE statement

• Transitive closure on general graphs

Outline

1. Motivation, and use cases

2. Example spatial networks

3. Conceptual model

4. Need for SQL extensions

5. CONNECT statement

6. RECURSIVE statement

7. Storage and data structures

8. Algorithms for connectivity query

9. Algorithms for shortest path

Querying Graphs: Overview

• Relational Algebra

• Can not express transitive closure queries

• Two ways to extend SQL to support graphs

1. Abstract Data Types

2. Custom Statements

– SQL2 - CONNECT BY clause(s) in SELECT statement

– SQL3 - WITH RECURSIVE statement

CONNECT BY : Input, Output

• Input: (a) Edges of a directed acyclic graph G

• (b) Start Node S, e.g., Missouri

• (c) Travel Direction

• Output: Transitive closure of G

• Ex. Predecessors of S = Missouri

• Ex. Successors of S = Missouri

Directed Edges: Tabular Representation

Source Dest

P1 Platte

P2 Platte

Y1 Yellowstone

Y2 Yellowstone

Platte Missouri

Yellowstone Missouri

Missouri Mississippi

Ohio Mississippi

Red Mississippi

Arkansas Mississippi

Table: Falls_Into

Source Dest

P1 Platte

P2 Platte

Y1 Yellowstone

Y2 Yellowstone

Platte Missouri

Yellowstone Missouri

Missouri Mississippi

Ohio Mississippi

Red Mississippi

Arkansas Mississippi

Table: Falls_Into

CONNECT BY– PRIOR - START WITH

SELECT source

FROM Falls_Into

CONNECT BY PRIOR source = dest

START WITH dest =“Missouri”

Source Dest

P1 Platte

P2 Platte

Y1 Yellowstone

Y2 Yellowstone

Platte Missouri

Yellowstone Missouri

Missouri Mississippi

Ohio Mississippi

Red Mississippi

Arkansas Mississippi

Table: Falls_Into

CONNECT BY– PRIOR - START WITH

SELECT source

FROM Falls_Into

CONNECT BY PRIOR source = dest

START WITH dest =“Missouri”

Q? What does CONNECT BY … PRIOR specify?

• Direction of travel

• Example: From Dest to Source

• Alternative: From Source to Dest

Source Dest

P1 Platte

P2 Platte

Y1 Yellowstone

Y2 Yellowstone

Platte Missouri

Yellowstone Missouri

Missouri Mississippi

Ohio Mississippi

Red Mississippi

Arkansas Mississippi

Table: Falls_Into

CONNECT BY– PRIOR - START WITH

SELECT source

FROM Falls_Into

CONNECT BY PRIOR source = dest

START WITH dest =“Missouri”

Choice 1: Travel from Dest to Source
Ex. List direct & indirect tributaries of Missouri.

Source Dest

P1 Platte

P2 Platte

Y1 Yellowstone

Y2 Yellowstone

Platte Missouri

Yellowstone Missouri

Missouri Mississippi

Ohio Mississippi

Red Mississippi

Arkansas Mississippi

Table: Falls_Into

CONNECT BY– PRIOR - START WITH

SELECT source

FROM Falls_Into

CONNECT BY PRIOR source = dest

START WITH dest =“Missouri”

SELECT dest

FROM Falls_Into

CONNECT BY source = PRIOR dest

START WITH source =“Missouri”

Choice 1: Travel from Dest to Source
Ex. List direct & indirect tributaries of Missouri.

Choice 2: Travel from Source to Dest

Ex. Which rivers are affected by spill in Missouri?

Execution Trace – Step 1

Source Dest

P1 Platte

P2 Platte

Y1 Yellowstone

Y2 Yellowstone

Platte Missouri

Yellowstone Missouri

Missouri Mississippi

Ohio Mississippi

Red Mississippi

Arkansas Mississippi

Table: Falls_IntoSELECT source
FROM Falls_Into
CONNECT BY PRIOR source = dest
START WITH dest = Missouri

1. Root Result = SELECT * FROM Falls_Into
WHERE (dest = Missouri)

Source Dest

Platte Missouri

Yellowstone Missouri

Table: “Root Result ”

Execution Trace – Step 2.

Source Dest

P1 Platte

P2 Platte

Y1 Yellowstone

Y2 Yellowstone

Platte Missouri

Yellowstone Missouri

Missouri Mississippi

Ohio Mississippi

Red Mississippi

Arkansas Mississippi

Table: Falls_IntoSELECT source
FROM Falls_Into
CONNECT BY PRIOR source = dest
START WITH dest = Missouri

2. Add rows from Falls_Into where (Root_Result.source =
Falls_Into.dest) to create table <Root + 1 level children>

Source Dest

Platte Missouri

Yellowstone Missouri

Root Result

Execution Trace – Step 2.

Source Dest

P1 Platte

P2 Platte

Y1 Yellowstone

Y2 Yellowstone

Platte Missouri

Yellowstone Missouri

Missouri Mississippi

Ohio Mississippi

Red Mississippi

Arkansas Mississippi

Table: Falls_IntoSELECT source
FROM Falls_Into
CONNECT BY PRIOR source = dest
START WITH dest = Missouri

2. Add rows from Falls_Into where (Root_Result.source =
Falls_Into.dest) to create table <Root + 1 level children>

Source Dest

Platte Missouri

Yellowstone Missouri

Root Result

Execution Trace – Step 2.

Source Dest

P1 Platte

P2 Platte

Y1 Yellowstone

Y2 Yellowstone

Platte Missouri

Yellowstone Missouri

Missouri Mississippi

Ohio Mississippi

Red Mississippi

Arkansas Mississippi

Table: Falls_IntoSELECT source
FROM Falls_Into
CONNECT BY PRIOR source = dest
START WITH dest = Missouri

2. Add rows from Falls_Into where (Root_Result.source =
Falls_Into.dest) to create table <Root + 1 level children>

Source Dest

Platte Missouri

Yellowstone Missouri

Seed Result

Source Dest

P1 Platte

P2 Platte

Y1 Yellowstone

Y2 Yellowstone

Platte Missouri

Yellowstone Missouri

Root + 1 level children

Execution Trace – Step 2.

Source Dest

P1 Platte

P2 Platte

Y1 Yellowstone

Y2 Yellowstone

Platte Missouri

Yellowstone Missouri

Missouri Mississippi

Ohio Mississippi

Red Mississippi

Arkansas Mississippi

Table: Falls_IntoSELECT source
FROM Falls_Into
CONNECT BY PRIOR source = dest
START WITH dest = Missouri

2. Add rows from Falls_Into where (Root+1levchild.source =
Falls_Into.dest) to create table <Root + 2 level children>

Source Dest

P1 Platte

P2 Platte

Y1 Yellowstone

Y2 Yellowstone

Platte Missouri

Yellowstone Missouri

Root + 1 level children

No new rows

can be added

into the result!

Execution Trace – Step 2.

Source Dest

P1 Platte

P2 Platte

Y1 Yellowstone

Y2 Yellowstone

Platte Missouri

Yellowstone Missouri

Missouri Mississippi

Ohio Mississippi

Red Mississippi

Arkansas Mississippi

Table: Falls_IntoSELECT source
FROM Falls_Into
CONNECT BY PRIOR source = dest
START WITH dest = Missouri

2. Add rows from Falls_Into where (Root+1lchild.source =
Falls_Into.dest) to create table <Root + 2 level children>

Source Dest

P1 Platte

P2 Platte

Y1 Yellowstone

Y2 Yellowstone

Platte Missouri

Yellowstone Missouri

Final answer

The query

returned all

predecessors of

Missouri!

Quiz

Which of the following is false about CONNECT BY

clause?

a) It is only able to output predecessors, but not successors,

of the start node

b) It is able to output transitive closure of a directed graph

c) It usually works with PRIOR and START WITH keywords

d) None of the above

Outline

1. Motivation, and use cases

2. Example spatial networks

3. Conceptual model

4. Need for SQL extensions

5. CONNECT statement

6. RECURSIVE statement

7. Storage and data structures

8. Algorithms for connectivity query

9. Algorithms for shortest path

Querying Graphs: Overview

• Relational Algebra

• Can not express transitive closure queries

• Two ways to extend SQL to support graphs

1. Abstract Data Types

2. Custom Statements

– SQL2 - CONNECT clause(s) in SELECT statement

– SQL3 - WITH RECURSIVE statement

WITH RECURSIVE: Input, Output

• Input:
• (a) Edges of a directed graph G

• (b) Sub-queries to
– Initialize results

– Recursively grow results

– Additional constraints

• Output: Transitive closure of G

• Ex. Predecessors of a node

• Ex. Successors of a node

Syntax of WITH RECURSIVE Statement

WITH RECURSIVE X(source,dest)

AS (SELECT source,dest FROM R)

UNION

(SELECT R.source, X.dest

FROM R, X

WHERE R.dest=X.source)

Description of Result Table

Initialization Query

Recursive Query to grow result

Example Input and Output

WITH RECURSIVE X(source,dest)

AS (SELECT source,dest FROM R)

UNION

(SELECT R.source, X.dest

FROM R, X

WHERE R.dest=X.source)

SQL3 Recursion Example - Meaning

• Initialize X by
(SELECT source,dest FROM R)

• Recursively grow X by
(SELECT R.source, X.dest

FROM R, X

WHERE R.dest=X.source)

• Infer X(a,c) from R(a,b),X(b,c)

SQL3 Recursion Example - Meaning

• Initialize X by
(SELECT source,dest FROM R)

• Recursively grow X by
(SELECT R.source, X.dest

FROM R, X

WHERE R.dest=X.source)

• Infer X(a,c) from R(a,b),X(b,c)

• Infer X(1,3) from R(1,2),X(2,3)

SQL3 Recursion Example - Meaning

• Initialize X by
(SELECT source,dest FROM R)

• Recursively grow X by
(SELECT R.source, X.dest

FROM R, X

WHERE R.dest=X.source)

• Infer X(a,c) from R(a,b),X(b,c)

• Infer X(1,3) from R(1,2),X(2,3)

• Infer X(2,4) from R(2,3),X(3,4)

SQL3 Recursion Example - Meaning

• Initialize X by
(SELECT source,dest FROM R)

• Recursively grow X by
(SELECT R.source, X.dest

FROM R, X

WHERE R.dest=X.source)

• Infer X(a,c) from R(a,b),X(b,c)

• Infer X(1,3) from R(1,2),X(2,3)

• Infer X(2,4) from R(2,3),X(3,4)

• Infer X(5,4) from R(5,3),X(3,4)

SQL3 Recursion Example - Meaning

• Initialize X by
(SELECT source,dest FROM R)

• Recursively grow X by
(SELECT R.source, X.dest

FROM R, X

WHERE R.dest=X.source)

• Infer X(a,c) from R(a,b),X(b,c)

• Infer X(1,3) from R(1,2),X(2,3)

• Infer X(2,4) from R(2,3),X(3,4)

• Infer X(5,4) from R(5,3),X(3,4)

• Infer X(1,4) from R(1,5),X(5,4)

SQL3 Recursion Example - Meaning

• Initialize X by
(SELECT source,dest FROM R)

• Recursively grow X by
(SELECT R.source, X.dest

FROM R, X

WHERE R.dest=X.source)

• Infer X(a,c) from R(a,b),X(b,c)

• Infer X(1,3) from R(1,2),X(2,3)

• Infer X(2,4) from R(2,3),X(3,4)

• Infer X(5,4) from R(5,3),X(3,4)

• Infer X(1,4) from R(1,5),X(5,4)

Quiz

Which of the following are true about WITH

RECURSIVE clause?

a) It is able to output transitive closure of a directed graph

b) It usually works with an edge table

c) It includes two SELECT statements

d) All of the above

Outline

1. Where do we use spatial networks?

2. Example spatial networks

3. Conceptual model of spatial networks

4. Why do we need SQL extensions

5. CONNECT clause

6. RECURSIVE statement

7. Data structures

8. Algorithms for connectivity query

9. Algorithms for shortest path

Data Models of Spatial Networks

1. Conceptual Model : Entity Relationship Diagrams, Graphs

2. Logical Data Model : Abstract Data types , Custom Statements in SQL

3. Physical Data Model
• Storage: Data-Structures, File-Structures

• Algorithms for common operations

Main Memory Data-Structures

• Adjacency matrix

• M[A, B] = 1 if and only if edge(vertex A, vertex B) exists

• Adjacency list :

• maps a vertex to a list of its successors

Disk-based Tables

• Normalized tables

• one for vertices, other for edges

• Denormalized

• one table for nodes with adjacency lists

File-Structures:
Partition Graph into Disk Blocks

• Which partitioning reduces disk I/O for graph operations?
• Choice 1: Geometric partition

File-Structures:
Partition Graph into Disk Blocks

• Which partitioning reduces disk I/O for graph operations?
• Choice 1: Geometric partition

• Choice 2: min-cut Graph Partition

• Choice 2 cuts fewer edges and is preferred

• Assuming uniform querying popularity across edges

Exercise: Graph Based Storage Methods

• Consider spatial network on right

• If a disk page holds 3 nodes, which
partitioning will has fewest cut-edges?

(a) (1, 2, 3), (4,5,6)

(b) (2, 3, 4), (1, 5, 6)

(c) (1, 2, 6), (3, 4, 5)

(d) (1, 3, 5), (2, 4, 6)

Outline

1. Motivation, and use cases

2. Example spatial networks

3. Conceptual model

4. Need for SQL extensions

5. CONNECT statement

6. RECURSIVE statement

7. Storage and data structures

8. Algorithms for connectivity query

9. Algorithms for shortest path

Data Models of Spatial Networks

1. Conceptual Model : Entity Relationship Diagrams, Graphs

2. Logical Data Model : Abstract Data types , Custom Statements in SQL

3. Physical Data Model
• Storage-Structures

• Algorithms for common operations

Algorithms

• Main memory
• Connectivity: Breadth first search, depth first search
• Shortest path: Dijkstra’s algorithm, A*

• Disk-based
• Shortest path - Hierarchical routing algorithm

Algorithms for Connectivity Query

• Breadth first search
• Visit descendent by generation

• Children before grandchildren

• Example: 1 - (2,4) - (3, 5)

• Depth first search
• Try a path till dead-end

• Backtrack to try different paths

• Like a maze game

• Example: 1-2-3-2-4-5

• Note backtrack from 3 to 2

5 3

Quiz

Which of the following is false?
a) Breadth first search visits nodes layer (i.e. generation) by layer

b) Depth first search try a path till dead-end, then backtrack to try different

paths

c) Depth first search always performs better than breadth first search

d) None of the above

Outline

1. Motivation, and use cases

2. Example spatial networks

3. Conceptual model

4. Need for SQL extensions

5. CONNECT statement

6. RECURSIVE statement

7. Storage and data structures

8. Algorithms for connectivity query

9. Algorithms for shortest path

Shortest Path Algorithms

• Iterate

• Expand most promising descent node

• Dijkstra’s: try closest descendent to self

• A* : try closest descendent to both destination and self

• Update current best path to each node, if a better path is found

• Till destination node is expanded

Dijkstra’s vs. A*

Dijkstra’s Algorithm A* Algorithm

Dijkstra’s vs. A*

Dijkstra’s Algorithm A* Algorithm

Dijkstra’s vs. A*

Dijkstra’s Algorithm A* Algorithm

Dijkstra’s vs. A*

Dijkstra’s Algorithm A* Algorithm

Dijkstra’s vs. A*

Dijkstra’s Algorithm A* Algorithm

Dijkstra’s vs. A*

Arrived!

Dijkstra’s Algorithm A* Algorithm

Dijkstra’s vs. A*

Dijkstra’s Algorithm

Dijkstra’s vs. A*

Dijkstra’s Algorithm

Dijkstra’s vs. A*

Arrived!

Dijkstra’s Algorithm

Shortest Path Algorithms

• Iterate
• Expand most promising node

• Dijkstra’s: try closest descendent to self
• A* : try closest descendent to both destination and self

• Update current best path to each node, if a better path is found

• Till destination node is expanded

• Correct assuming
• Sub-path optimality

• Fixed, positive and additive edge costs

• A* heuristic function h(x) (estimated distance to destination from x) has two properties

– It is an underestimate to the actual distance

– It is consistent i.e., for every edge (x,y), h(x) <= d(x,y) + h(y) (d is the length of
edge (x,y)

Shortest Path Strategies for Sec Memory

• Dijkstra’s and Best first algorithms
• Work well when entire graph is loaded in main memory

• Otherwise their performance degrades substantially

• Hierarchical Routing Algorithms
• Works with graphs on secondary storage

• Loads small pieces of the graph in main memories

• Can compute least cost routes

• Key ideas behind Hierarchical Routing Algorithm
• Fragment graphs - pieces of original graph obtained via node

partitioning

• Boundary nodes - nodes of with edges to two fragments

• Boundary graph - a summary of original graph
• Contains Boundary nodes
• Boundary edges: edges across fragments or paths within a fragment

Shortest Path Strategies for Sec Memory

• A Summary of Optimal path in original graph can be
computed
• Using Boundary graph and 2 fragments

• The summary can be expanded into optimal path in original
graph
• Examining a fragments overlapping with the path

• Loading one fragment in memory at a time

Shortest Path Strategies for Sec Memory

Shortest Path Strategies – (Illustration of

the Algorithm)

• Figure 6.7(a) - fragments of source and destination nodes

• Figure 6.7(b) - computing summary of optimal path using
• Boundary graph and 2 fragments

• Note use of boundary edges only in the path computation

• Figure 6.8(a) - The summary of optimal path using
boundary edges

• Figure 6.8(b) Expansion back to optimal path in original
graph

Hierarchical Routing Algorithm-Step 1

• Step 1: Choose Boundary Node Pair
• Minimize COST(S,Ba)+COST(Ba,Bd)+COST(Bd,D)

• Determining Cost May Be Non-Trivial

Fig 6.7(a)

Hierarchical Routing- Step 2

• Step 2: Shortest Boundary Path

Fig 6.8(a)

Hierarchical Routing- Step 3

• Step 3: Expand Boundary Path: (Ba1,Bd) -> Ba1 Bda2 Ba3
Bda4…Bd
• Boundary Edge (Bij,Bj) ->fragment path (Bi1,N1N2N3…….Nk,Bj)

Fig 6.8(a)

Quiz

Which of the following is false?

a) Hierarchical routing algorithms are Disk-based shortest

path algorithms

b) Breadth first search and depth first search are both

connectivity query algorithms

c) Best first algorithm is always faster than Dijkstra’s

algorithm

d) None of the above

