
Database System Implementation- CSE 507

Homework 2

Due date: March 8 2017 9:00am

Instructions:

 All submissions must be made through usebackpack site for this course

(https://www.usebackpack.com/iiitd/w2017/cse507)

 Only one submission per team would be considered and graded. It would be assumed that all members of the team have

participated equally and same score would be given to all members of the team.

 Your submission should have names of all the members of your team.

 Only one submission should be uploaded per team.

 Any assumptions made while solving the problem should be clearly stated in the solution.

 Question 2 is for teams of size 3. This questions will not be graded for teams for size 2 or less.

 As always correctness of the algorithm must be ensured.

 It is preferred that all algorithms are implemented in the same language.

 If you are implementing in C++ then your file extension must be .cc only. No other extension would be accepted.

 TAs would be quizzing you on your code. You must understand each and every line of your submitted code. Also the

implementation specifications mentioned in the questions need to be strictly followed. Failure to adhere to these

requirements would result in substantial loss of points.

 Very Important: Your code should not have a directory structure. All files (code + dataset + written material for

questions) should be present in just one folder. Note that this is absolutely crucial for grading this assignment.

 You don’t have to use any database system (e.g., PostGRE SQL, Oracle, etc.) for this assignment.

Question 1

For this question you need to need to implement Bitmap and Bit slice indexes on a large file and conduct experiments to evaluate

their performance as some experimental parameters are varied. Following are some specifications to be followed in this

assignment. Over and above these specifications your design logic should follow the core principles of the Bitmap and Bit slice

indexes and any assumptions made should be reasonable.

Dataset creation (and simulating storage on a disk)

For this question, you would have to create a synthetic table (simulating sales records of department stores) containing 20Lakh

records. Each record in this file contains three fields: (1) Transaction ID (an integer), (2) Transaction sale amount (an integer),

(3) Customer name (string). Transaction ID is an integer to identify each transaction uniquely in the dataset. Transaction sale

amount is a random integer between 1 and 50000. Customer name is a random 3 letter string. You can model this as a character

array of length 3. After creating this dataset, you need to simulate its storage on a disk. Define a disk block as a file which can

store only 300 records of the synthetic. Assume unspanned organization i.e., records are not allowed to span across two disk

block. Following this store your entire synthetic table as collection of these “disk blocks.” Each disk block (simulated as a file)

should have a unique name, for that you can name them as 1, 2, 3, …, etc. Basically, your original synthetic sales table would be

stored as a series of files. The first disk block (file) would store Row 1 -- Row 300; second disk block (second file) would store

Row 301 – Row 600. For sake of simplicity use text files for simulating the disk blocks. Also note that each disk block should

have an entry at its end which stores the files name of the next disk block for the file. Additionally, in your code you should only

store the file name of the first disk block of the synthetic sales table.

Bitmap Index creation:

Create a bit map index on the transaction sale amount. For bit map index, implement both RowID representation and Bit array

representation. In RowID representation, we will store the Transaction IDs where that particular value of sale amount is present.

Whereas in Bit array representation you need to create an array of length 20Lakhs (all initialized to zero) and then switch the

values in the array to 1 for all transaction IDs which have that particular value of sale amount. Similar to your synthetic table, you

need to store the bitmap index also on disk as disk blocks (similar to previously mentioned logic). In case of RowID representation,

your file simulating a disk block should store only 1000RowIDs. In case of bit array representation, assume that each file

simulating a disk block can store 32000 “1”s or “0”s.

 In addition, given that this bit map index is likely to have many unique values (one vector/rowed representation for each unique

sale amount), construct and secondary index on the unique values present in the bit map index. Basically, this secondary index is

an associative array with key as the unique sale amount and value as the file name of the first block of the bit vector or RowID

representation. For sake of simplicity you may implement this secondary index using a hash_map data structure and keep that in

your main memory as the program is running.

Bit slice Index creation:

Create a bit slice index on the transaction sale amount. This would be of 16 bits, which means each the sale amount is represented

as a 16-bit integer. Similar to your synthetic table, you need to store the bit slice index also on disk as disk blocks (similar to

previously mentioned logic). Assume that each file simulating a disk block can store 32000 “1”s or “0”s. Construct secondary

index on the significant bits present in the bit slice index. Basically, this secondary index is an associative array with key as the

significant bit and value as the file name of the first block of the bit array (stored as a series of files) . For sake of simplicity you

may implement this secondary index also using a hash_map data structure and keep that in your main memory as the program is

running.

Query to be studied:

For this question, you would be studying the performance of the previously created indexes for the following query:

Query 1: Select SUM(sale amount) From SALES_TABLE Where <condition>

Assume that the where clause has already been evaluated and given as a bit vector Bf (of length 20Lakh). In experiments, we

will be creating random Bf and evaluating the cost of the different query plans. This bit vector Bf would be there in the main

memory as the program is running. Your code should have a logic which can translate a given RowID to the appropriate filename

(aka simulated disk block in sales table) and the entry number instead of doing a linear scan of file.

Experiment 1:

Create a random bit array Bf (of length 20Lakh). This bit array should have about 1 Lakh “1”s distributed randomly throughout

the length of the Bf. Evaluate Query 1 using the following option (a) no-index, (b) Bitmap index with RowID representation, (c)

Bitmap index with bit array representation and, (d) Bit-slice index and report the number of disk blocks (present as files in your

implementation) read for each of the mentioned (a), (b), (c) and (d) options.

Experiment 2:

Create a random bit array Bf (of length 20Lakh). This bit array should have about 10,000 “1”s distributed randomly throughout

the length of the Bf. Evaluate Query 1 using the following option (a) no-index, (b) Bitmap index with RowID representation, (c)

Bitmap index with bit array representation and, (d) Bit-slice index and report the number of disk blocks (present as files in your

implementation) read for each of the mentioned (a), (b), (c) and (d) options.

Experiment 3:

Create a random bit array Bf (of length 20Lakh). This bit array should have about 2000 “1”s distributed randomly throughout the

length of the Bf. Evaluate Query 1 using the following option (a) no-index, (b) Bitmap index with RowID representation, (c)

Bitmap index with bit array representation and, (d) Bit-slice index and report the number of disk blocks (present as files in your

implementation) read for each of the mentioned (a), (b), (c) and (d) options.

Experiment 4:

Create a random bit array Bf (of length 20Lakh). This bit array should have about 500 “1”s distributed randomly throughout the

length of the Bf. Evaluate Query 1 using the following option (a) no-index, (b) Bitmap index with RowID representation, (c)

Bitmap index with bit array representation and, (d) Bit-slice index and report the number of disk blocks (present as files in your

implementation) read for each of the mentioned (a), (b), (c) and (d) options.

Experiment 5:

Create a random bit array Bf (of length 20Lakh). This bit array should have about 100 “1”s distributed randomly throughout the

length of the Bf. Evaluate Query 1 using the following option (a) no-index, (b) Bitmap index with RowID representation, (c)

Bitmap index with bit array representation and, (d) Bit-slice index and report the number of disk blocks (present as files in your

implementation) read for each of the mentioned (a), (b), (c) and (d) options.

Experiment 6:

Create a random bit array Bf (of length 20Lakh). This bit array should have about 25 “1”s distributed randomly throughout the

length of the Bf. Evaluate Query 1 using the following option (a) no-index, (b) Bitmap index with RowID representation, (c)

Bitmap index with bit array representation and, (d) Bit-slice index and report the number of disk blocks (present as files in your

implementation) read for each of the mentioned (a), (b), (c) and (d) options.

Things to be submitted for this question:

(a) Code implemented for Bitmap index, Bit slice index and code for creating synthetic sales table (and storing it in simulated

disk blocks (files)). Code should have proper documentation. Note that if the TA cannot understand your code, you would

not be receiving full score.

(b) Data for the recorded in Experiments 1, 2, 3, 4, 5 and 6

(c) A brief (non-trivial) description of the trends observed along with their analysis (why do think the observed trend makes

sense?). This text should about 200 words.

Important Note for evaluation:

 TAs would be using a small dataset to evaluate the correctness of your code. They would give you a small SALES tables

with just 10-15 records. So you should not hard code table sizes and blocking factors into your code. They should be taken

in as parameters.

Question 2 (extra question for teams of size 3):

Query to be studied:

For this question, you would be studying the performance of the previously created indexes for the following query:

Query 2: Select * From SALES_TABLE Where Sale amount >= {A1} and Sale amount < {A2}

Experiment 2-1:

Evaluate Query 2 using the following option (a) no-index, (b) Bitmap index with bit array representation and, (c) Bit-slice index

and report the number of disk blocks (present as files in your implementation) read for each of the mentioned (a), (b) and (c)

options. A1 = 100 and A2 = 20000. The output of the query processing algorithm should be a bit array BRES (of length 20Lakh).

This bit vector should have “1”s for all rows which would be present in the final result set. BRES can stay in the main memory as

your program is running.

Experiment 2-2:

Evaluate Query 2 using the following option (a) no-index, (b) Bitmap index with bit array representation and, (c) Bit-slice index

and report the number of disk blocks (present as files in your implementation) read for each of the mentioned (a), (b) and (c)

options. A1 = 100 and A2 = 110. The output of the query processing algorithm should be a bit array BRES (of length 20Lakh).

This bit vector should have “1”s for all rows which would be present in the final result set. BRES can stay in the main memory as

your program is running.

Things to be submitted for this question:

(a) Code implemented. Code should have proper documentation. Note that if the TA cannot understand your code, you would

not be receiving full score.

(b) Data for the recorded in Experiments 2-1, 2-2.

(c) A brief (non-trivial) description of the trends observed along with their analysis (why do think the observed trend makes

sense?). This text should about 200 words.

Important Note for evaluation:

 TAs would be using a small dataset to evaluate the correctness of your code. They would give you a small SALES tables

with just 10-15 records. So you should not hard code table sizes and blocking factors into your code. They should be taken

in as parameters.

